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1Université Laval, 2Depix Technologies, 3Toyota Technological Institute at Chicago

https://lvsn.github.io/ZeroComp

(a) Target image (b) Intrinsic maps (c) Predicted composite

Figure 1. From (a) a target background image and (b) available intrinsic maps (depth, normals, albedo) rendered from a 3D model,
our method ZEROCOMP generates (c) a realistic composite, without access to the scene geometry or lighting, and without being trained
specifically for object compositing. ZEROCOMP realistically shades the object and adds a compelling shadow.

Abstract

We present ZEROCOMP, an effective zero-shot 3D ob-
ject compositing approach that does not require paired
composite-scene images during training. Our method lever-
ages ControlNet to condition from intrinsic images and
combines it with a Stable Diffusion model to utilize its scene
priors, together operating as an effective rendering engine.
During training, ZEROCOMP uses intrinsic images based
on geometry, albedo, and masked shading, all without the
need for paired images of scenes with and without compos-
ite objects. Once trained, it seamlessly integrates virtual
3D objects into scenes, adjusting shading to create realistic
composites. We develop a high-quality evaluation dataset
and demonstrate that ZEROCOMP outperforms methods us-
ing explicit lighting estimations and generative techniques
in quantitative and human perception benchmarks. Addi-
tionally, ZEROCOMP extends to real and outdoor image
compositing, even when trained solely on synthetic indoor
data, showcasing its effectiveness in image compositing.

1. Introduction
Compositing 3D objects into real photographs has be-

come an essential task in diverse fields such as image edit-
ing and visual effects. To achieve high realism, the virtual
object—defined as a 3D asset with geometry, texture, etc.—

must interact with the lighting and elements from the real
target scene. To this end, Debevec [18] introduced “image-
based lighting” (IBL), a three-step approach for composit-
ing of 3D objects into real images: 1) capture the high dy-
namic range (HDR) lighting properties of the target scene to
use as a virtual light source; 2) approximate the surrounding
target scene geometry to catch virtual shadows; and 3) ren-
der and composite the virtual object into the scene. Since
then, several methods have been proposed to improve upon
each of these steps, but the overall approach has remained
the same. For example, lighting estimation methods [22]
have replaced the need for capturing light probes; depth es-
timation [4] and camera auto-calibration [32] can approxi-
mate the target scene geometry.

Recent works [12, 85] has departed from this three-step
procedure and leveraged pre-trained diffusion models such
as Stable Diffusion [58] (SD). This creates a simpler, single-
pass approach that creates highly realistic images. However,
the object is often adjusted, rotated, or even deformed by the
SD model, which leads to unpredictable results.

Addressing the limitations of current IBL- and SD-based
compositing methods, we propose ZEROCOMP, which
merges the generative power of SD models with the pre-
cision of the IBL framework to enable realistic compositing
of virtual 3D objects into images. Central to ZEROCOMP
is training a ControlNet [86] that leverages a pre-trained
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SD backbone to render images from an intrinsic decompo-
sition of a given scene. This training results in zero-shot
compositing, allowing object insertion into diverse scenes
without specific prior training. Consequently, ZEROCOMP
ensures realistic compositing of virtual objects, preserv-
ing their shape, pose, and texture, without requiring paired
training dataset. This zero-shot capability stems from our
rendering-focused training strategy, offering a compositing
solution within a single framework.

To achieve this, our key idea is to train ZEROCOMP on a
simpler proxy task: given a decomposition of an image into
its intrinsic components—depth, normals, albedo, and par-
tial input shading—generate a fully relit image. This net-
work is trained using synthetic datasets like OpenRooms
[44] or InteriorVerse [91]. At inference, new 3D objects
are inserted into the depth, normals, and albedo layers as
naive composites. The trained model then generates a fully-
shaded version of the object, faithful to the scene lighting
while retaining object identity. In short, ZEROCOMP acts
as a neural renderer, specifically trained to generate illumi-
nation effects such as shading and cast shadows (Fig. 1).

To rigorously assess our approach, we compile a metic-
ulously curated dataset for evaluating image compositing,
utilizing 3D object assets from the Amazon Berkeley Object
dataset [15] and background scenes from the Laval HDR
Indoor dataset [22]. Extensive evaluation shows that our
method competes well with traditional methods relying on
explicit lighting estimation and surpasses other SD-based
strategies in realism and faithfulness to the object. Given
that quantitative metrics often do not correlate well with hu-
man perception [27], we conducted a user study that demon-
strated our approach significantly outshines all other meth-
ods. In summary our contributions are: 1) we present ZE-
ROCOMP for zero-shot object compositing, where a Con-
trolNet is trained as a neural renderer, conditioned on intrin-
sic layers; 2) a novel test dataset for evaluating 3D object
compositing methods; 3) a thorough evaluation unifying
several methods from the recent literature, including light-
ing estimation, shadow generation, diffusion models and
harmonization approaches; and 4) a user study demonstrat-
ing the performance of ZEROCOMP at generating renders
more perceptually pleasing than state-of-the-art methods.

2. Related work
Image compositing has a long history in vision and

graphics. Of note, Reinhard et al. [55] study color-based
harmonization, later revisited in [52]. Issuing from the pi-
oneering work by Burt and Adelson [9], seamless object
blending has been studied in [49,59,67]. Lalonde et al. [41]
insert compatible objects from a large database into a tar-
get scene. Karsch et al. [33, 34] insert synthetic 3D ob-
jects through the estimation of geometry and lighting an-
notations. Since then, image compositing techniques have

approached the problem along different dimensions.
Using light estimators. This body of work achieves com-
positing by using HDR lighting for scenes and relighting
virtual 3D objects within them. Learning-based methods
estimate illumination through both non-parametric mod-
els [22] and parametric models [21, 30]. Recent advance-
ments enable editable illumination by merging paramet-
ric and non-parametric approaches for lighting adjustments
[43, 70, 72]. Efforts to tackle complex scene lighting have
led to methods for estimating spatially-varying illumina-
tion [13, 23, 24, 42, 65, 92]. Unlike these methods, ZERO-
COMP does not rely on explicit lighting estimation and ren-
dering; instead, it jointly learns these tasks.
Intrinsic images, or the process of factorizing an image
into albedo and shading, has long been studied [3]. More
recent approaches also recover other intrinsic maps such as
depth and surface normals [20]. Several approaches try to
achieve better decomposition through incorporating human
annotations [39,73,90], ordinal information [10,94], physi-
cal insights [54,79], shade tree structure [25], or multi-view
information [50, 78]. Other methods [13, 42, 92] estimate
shape, spatially-varying lighting, and non-Lambertian sur-
face reflectance for improved compositing. Recent methods
have utilized pretrained StyleGAN or SD for the extraction
of intrinsic images, either via latent search [6], low-rank
adaptations [19], through a probabilistic formulation [38],
or though ControlNet [47]. Concurrently, RGB↔X [83] de-
composes images into intrinsic maps and synthesizes them
using material and lighting-aware diffusion models. Intrin-
sic images can be used to reshade inserted objects [5]. This
can be extended by adjusting the shading in the foreground
and background separately for compatible composites [11].
StyLitGAN [7, 8] relits real images by manipulating Style-
GAN latent space. LightIt [36] controls lighting using in-
trinsics in diffusion models. Similarly, we use intrinsic im-
ages for compositing and leverage scene priors through pre-
trained diffusion models.
Shadows. Compositing accurate shadows is crucial for
photorealism [14]. Recent advances include shadow gen-
eration [46] and harmonization [69] models. Techniques by
Sheng et al. [61–63] use pixel height information to gen-
erate various light effects, including shadows. In contrast,
our approach implicitly learns to generate realistic shadows
without shadow-specific supervision, eliminating the need
for a separate shadow generation or correction pipeline.
Image harmonization. Methods aiming to harmonize the
color distribution of inserted objects for coherence with the
background include [40, 52, 55, 66, 68]. Relevant meth-
ods also exploit intrinsic images for harmonization [11,29].
These approaches typically focus on adjusting object colors
and, unlike our work, cannot synthesize shadows.
Using generative models. Large generative models like
Stable Diffusion (SD) [58] have led to the development of
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Figure 2. Overview of our zero-shot intrinsic compositing pipeline. The input background image xbg (top-left) is first converted to intrinsic
layers ibg using specialized networks (top, in yellow). In parallel, the corresponding intrinsic layers of the 3D object iobj—except the
shading—are rendered using a graphics engine (middle, in blue). Layers are then composited together to obtain the composited intrinsics
icomp (bottom, in green). From this, our trained ZEROCOMP renders the final composite x (top-right).

image editing applications by adapting pretrained models
through fine-tuning [31], or by learning adapters [77]. We
employ ControlNet [86] to train a model that accepts intrin-
sic images and learns to render the final image.

Recent methods in object compositing have largely
leveraged SD. 3DIT [48] uses language instructions for ob-
ject insertion but requires paired images for training. Cus-
tomNet [80] manipulates viewpoint, location, and back-
ground, while PhD [88] employs a two-step harmoniza-
tion process. ControlCom [85] and ObjectStitch [64] fo-
cus on embedding manipulation. Paint by Example [75]
uses exemplar-guided compositing, and AnyDoor [12] uses
identity tokens and a frequency-aware feature extractor for
detailed object representation. More recent works such as
DiffusionLight [51] (lighting estimation), Alchemist [60]
(material control), DiLightNet [82] (object rendering), and
others [53, 89] (multi-view relighting) rely on specifically-
designed training sets. In contrast, our method uniquely
integrates intrinsic image handling with ControlNet [86],
enabling zero-shot 3D object compositing without explicit
feature manipulation or multi-step processes.

3. ZEROCOMP

ZEROCOMP is a neural renderer that leverages the power
of Stable Diffusion [58] and ControlNet [86], which is
trained to render images from their intrinsic maps, namely

depth, normals, albedo and shading. The distinctive aspect
of our model is its ability to integrate 3D objects into 2D im-
ages without requiring training on paired images of scenes
both with and without the objects. We refer to this capabil-
ity as zero-shot compositing, allowing the model to perform
compositing tasks it hasn’t been explicitly trained for.

A crucial element of ZEROCOMP involves training it to
develop an implicit understanding of the lighting and ge-
ometry from the intrinsic maps, enabling it to correct the
appearance of the shading where it is missing. During infer-
ence, objects can be inserted into scenes using their albedo,
normals, and depth maps. For the shading component, re-
gions corresponding to the inserted objects are masked, and
our trained ZEROCOMP adjusts this shading to align with
the scene’s original lighting. An overview of our zero-shot
intrinsic compositing approach is illustrated in Fig. 2.

3.1. Training ZEROCOMP

The training process is meticulously designed to handle
the intrinsic components of images where shading is par-
tially available. The model learns to reconstruct scenes from
provided intrinsic maps while being conditioned on ran-
domly masked regions within the shading channels. This
approach encourages the model to reason about the scene’s
lighting and geometry autonomously.
Training data. The synthetic OpenRooms [44] is used as
sole training data. This dataset provides depth, normals,

485



albedo, and partial shading information (division between
the image and albedo) necessary to understand and recreate
complex scenes. Our method can be easily extended to ad-
ditional intrinsic maps if available, such as roughness and
metallic maps in InteriorVerse [91].
Shading masks. During training, random masks s are gen-
erated using a mix of random rectangles/circles (60% prob-
ability) and by removing or keeping the entire shading maps
(30% and 10% probability resp., see supp.).
Learning objectives and losses. The primary training
objective is to accurately render images based on intrinsic
maps while effectively inpainting missing shading informa-
tion. This is formalized through a loss function that con-
ditions the rendering process on intrinsic maps and a mask
indicating regions for shading inpainting. To improve the
fidelity of the hue in the background, we follow [45] and
use zero terminal SNR, v prediction, DDIM scheduling and
trailing timestep selection. The loss function is defined as:

L = Et,x0,ϵ,s ∥vt − ṽt(xt, i, s, t)∥22 , (1)

where vt progressively evolves from image to noise over the
denoising time steps (see [45]). xt is the generated image
at time step t, i = {id, in, ia, is} is the intrinsic conditions
provided to the model, containing depth, normals, albedo
and shading resp., and ṽt(·) the model prediction. Et,x0,ϵ,s

denotes the expectation over: denoising time steps t, initial
image x0, noise ϵ, and shading mask s.

By iteratively minimizing L across various training
steps, ZEROCOMP progressively refines its ability to render
realistic images given image intrinsics. We use a pretrained
Stable Diffusion 2.1 as the backbone model and condition it
on intrinsic inputs i using ControlNet. The model is trained
for 808k steps with a batch size of 32 at a resolution of
512× 512 using 19,709 training samples.

3.2. Zero-shot object compositing using ZEROCOMP

Our goal is to place objects into photographs to achieve a
seamless blend without prior access to intrinsic scene infor-
mation. To accomplish this, we utilize available pretrained,
off-the-shelf models that infer the intrinsic properties of the
background ibg from the given photograph (Fig. 2, top).
Specifically, we employ ZoeDepth [4] to extract depth maps
from the input images. For normals, we leverage StableNor-
mal [76]. Albedo is estimated using Intrinsic Image Dif-
fusion (IID) [37]. The shading information is derived by
dividing the original image with its albedo.

For the objects we intend to insert (Fig. 2, middle), we
use the Blender [16] graphics engine to render its intrin-
sic layers iobj, except shading which is unknown. As with
traditional IBL, this allows the user full control over the ob-
ject pose and location in the target image. Each intrinsic
map from the background and object are then composited

together through simple compositing

ic,comp = mic,obj + (1−m) ic,bg , (2)

where ic ∈ {id, in, ia, is} denotes one of the intrinsic maps
and m the object mask obtained from the graphics engine,
resulting in a set of composite intrinsics (Fig. 2, bottom).
Since the depth scale of the object and the background may
not match, we align the object footprint depth (planar pro-
jection on the vertical axis) with the background depth by
fitting an affine transform to the footprint and applying it to
id,obj. An object also affects surroundings (e.g., by casting
shadows), so we mask any pixel from the shading map if the
pixel estimated 3D position is within a distance threshold

d = λ(max
y

my,obj −min
y

my,obj) , (3)

where my,obj represents the (3D) y coordinate of a pixel
in the object mask m (obtained from the depth map id,obj).
This threshold is motivated by the fact that the length of
a shadow is typically proportional to the object height. In
practice, we set the relative shading radius λ = 1.0, and ex-
plore different values in Sec. 5. Pixels in the shading map
directly above the object are never masked, to avoid unnec-
essary shadows (on the ceiling, for instance).

Finally, our trained ZEROCOMP is run on the composite
intrinsics to obtain the final output (Fig. 2, right), where the
newly added object appears as a natural part of the original
scene. This approach enables the insertion of objects into
various scenes with realistic lighting interactions including
reshading and casting shadows, achieving zero-shot com-
positing. For all our experiments, we use seed 469, which
was shown in [74] to produce the highest-quality genera-
tions in SD among 1000 seeds.

3.3. Preserving background fidelity

The ControlNet framework does not guarantee a perfect
reconstruction of the background image. As demonstrated
in previous studies, small details are susceptible to loss [93].
To mitigate this, we take inspiration from the differential
compositing framework of Debevec [18] and generate a
shadow opacity ratio from two predictions of ZEROCOMP.
Denoting fθ(i) as a full inference pass of the model on input
intrinsic maps i = {id, in, ia, is} (containing depth, nor-
mals, albedo and shading resp., c.f. Sec. 3.1), we compute
the shadow opacity ratio R = fθ(icomp)/fθ(ibg), where
icomp and ibg are the intrinsic maps of the composite and
background resp., see Eq. (2). Note that the ratio is com-
puted on grayscale and the result is clamped to [0, 1]. We fix
the diffusion with the same seed and use the same shading
mask on the background is to minimize discrepancies be-
tween both predictions. To further avoid unnecessary opac-
ity unrelated to the object, we set the opacity to 1 if they
are outside of the shading mask m computed earlier (c.f.
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(a) xbg (b) fθ(ibg) (c) fθ(icomp) (d) R (e) m (f) Comp x

Figure 3. Overview of different components from our full com-
positing equation in eq. (4). For (a) a given target background im-
age xbg, diffusion models can create artifacts when rendering (b)
background fθ(ibg) and (c) composite fθ(icomp) intrinsics. To
alleviate this, we compute (d) the shadow opacity ratio of predic-
tions R and, together with (e) the object mask m, we can create (f)
the final artifacts-free composite x. Please see the insets (top-right
of each column) for a zoomed-in view of the artifacts created.

Sec. 3.2). A Gaussian blur with kernel 15× 15 and σ = 1.5
is applied to m to avoid blending artifacts. The final com-
positing equation is

x = (1−m)Rxbg +mC f(icomp) , (4)

where C is a color balance factor computed as the aver-
age color ratio of background xbg and the network output
f(icomp) to account for global color shifts. In Fig. 3, we
compare our composition and direct output of the network.

4. Test dataset for 3D object compositing
Evaluating the quality of 3D object composites can be

cumbersome, and performing a uniform evaluation of var-
ious methods such as lighting estimation, harmonization,
or generative techniques is challenging. We require scenes
where 1) the background is a real image with known HDR
lighting, 2) the scene geometry is defined, 3) a virtual ob-
ject is correctly positioned, and 4) a realistic rendering ex-
ists. Current evaluation datasets often lack some of these
requirements: [12] lack object geometry, [23] does not in-
clude objects, [44,57] use synthetic imagery, and 3D Copy-
Paste [24] lacks ground truth HDR lighting. Inspired by
[24], we propose a simple method for automatically gen-
erating a dataset for evaluating 3D object compositing ap-
proaches.

Specifically, we leverage the test dataset provided by
[17, 72], which contains 2,240 images of 50◦ field of view,
extracted from HDR environment maps in the Laval Indoor
HDR Dataset [22], and the result from several lighting es-
timation methods. For each image, we first find a suitable
location to insert a virtual object by computing normals us-
ing DSINE [2] on each crop. We detect a support region by
selecting normals with an angle less than 15◦ with the up
vector. Images with support regions too small (defined as
not fitting a circle of 75 pixels radius) are discarded, result-
ing in 228 admissible background crops. Next, a 3D object
is chosen at random from the ABO dataset [15] and ran-
domly rotated about its vertical axis. The object is scaled

to fit its footprint in the support region, ensuring its bound-
ing box is entirely within the camera frustum. Four ran-
dom objects are rendered for each image, and those with
inconsistent geometry, semantics, or unrealistic albedo are
discarded, resulting in a total of 213 high-quality images.

Finally, we render the object using physically based ren-
dering in Blender [16]. To account for spatially-varying in-
door lighting, we warp the panorama by converting it to
a 3D mesh according to its depth map from [56], and re-
project it at the center of the object’s bounding box. This
approach provides high-quality simulated ground truth, en-
abling the generation of many more scenes than the 20
available in [23]. The last column of Fig. 4 shows a repre-
sentative subset of realistic image composites. This dataset
will be released publicly upon publication of the paper.

5. Evaluation

In this section, we conduct a comprehensive evaluation
of ZEROCOMP’s performance as a neural renderer for zero-
shot compositing. Leveraging the evaluation dataset intro-
duced in Sec. 4, we quantitatively and qualitatively com-
pare against state-of-the-art methods on a range of metrics
to offer a multi-faceted assessment of image quality. We
use standard metrics to compare composites with the sim-
ulated ground truth, including Peak Signal-to-Noise Ratio
(PSNR), Root Mean Square Error (RMSE) and its scale-
invariant version (si-RMSE), Mean Absolute Difference
(MAE), Structural Similarity Index Measure (SSIM) [71],
Learned Perceptual Image Patch Similarity (LPIPS) [87],
and FLIP [1]. While we agree that perceptual metrics are
better suited for our task, several researchers [26, 28, 35]
highlight the vulnerability of neural network-based metrics
like LPIPS to noise and adversarial attacks. To mitigate
the influence of the rendering noise present in the training
datasets [44, 91], we resize both the test images and refer-
ences to 256× 256 for all methods on LPIPS. Additionally,
FLIP addresses this issue by applying a spatial filter remov-
ing high frequency details imperceptible to humans. Dur-
ing evaluation, we demonstrate that our approach achieves
performance comparable to most lighting estimation meth-
ods, all without explicitly modeling lighting conditions. We
also contrast our method with diffusion and intrinsic image-
based baselines [11, 12, 46, 85], showcasing superiority on
most metrics.

Given that recent research shows that quantitative met-
rics do not correlate well with human perception [27, 81],
we also conduct a human perceptual study, revealing a clear
improvement over all other methods. This highlights ZE-
ROCOMP’s ability to produce perceptually plausible results.
Finally, we showcase its extensions to material editing, out-
door scenes, and real-world 2D images.
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Background Garon’19 [23] EMLight [84] ARShadowGAN [46] ControlCom [85] Ours Simulated GT

Figure 4. Qualitative comparison with lighting estimation and image-based methods. Results are sorted from worst (top) to best (bottom)
PSNR for “Ours”. Please zoom in and refer to the supplementary material for additional images and methods.

5.1. Lighting estimation method comparison

Traditional lighting-based compositing methods set the
benchmark by estimating scene lighting for realistic 3D
object insertion. These methods use a full 3D object, a
delicately curated model for shadow casting, a physically-
based rendering engine, and a suitable lighting represen-
tation (e.g., parametric lights [21, 22, 72], spherical func-
tions [17,23,84], etc.). For optimal results, everything must
be perfectly aligned. In contrast, ZEROCOMP only requires
placing the object in 2D, generating intrinsics using simple
shaders (depth, normals, and albedo), and relies on the net-
work understanding to infer missing information. Despite
the task is more challenging, ZEROCOMP achieves compet-
itive results, surpassing many explicit lighting-based tech-
niques [22, 70, 72], as shown in Tab. 1. Qualitative compar-
isons in Fig. 4 show that ZEROCOMP realistically shades
these objects while maintaining their appearance, acting as
a strong contender to traditional approaches.

Method PSNR↑ RMSE↓ si-RMSE↓ SSIM↑ MAE↓ LPIPS↓ FLIP↓

L
ig

ht
in

g-
ba

se
d

Gardner’17 [22] 25.9 0.0677 0.0606 0.967 0.0211 0.0331 0.0664
Garon’19 [23] 34.2 0.0256 0.0251 0.986 0.0089 0.0175 0.0440
Gardner’19 [21] 32.3 0.0293 0.0281 0.984 0.0091 0.0211 0.0450
Everlight [17] 33.3 0.0290 0.0285 0.982 0.0102 0.0184 0.0462
StyleLight [70] 29.3 0.0416 0.0399 0.976 0.0139 0.0287 0.0580
Weber’22 [72] 29.6 0.0403 0.0380 0.980 0.0130 0.0239 0.0556
EMLight [84] 32.7 0.0301 0.0297 0.981 0.0104 0.0218 0.0471

Im
ag

e-
ba

se
d AnyDoor [12] 24.5 0.0666 0.0657 0.883 0.0265 0.0822 0.1098

ControlCom [85] 25.5 0.0566 0.0554 0.866 0.0283 0.0711 0.1516
Careaga’23 [11] 26.6 0.0527 0.0498 0.965 0.0192 0.0347 0.0884
ARShadowGAN [46] 27.4 0.0484 0.0467 0.907 0.0213 0.0584 0.0994

ZEROCOMP OR 31.7 0.0303 0.0295 0.970 0.0109 0.0269 0.0538
ZEROCOMP IV 33.0 0.0259 0.0254 0.973 0.0091 0.0246 0.0474

Table 1. Quantitative evaluation. All metrics are computed on
the whole image. Different sections indicate methods, from top to
bottom: lighting estimation, image-based compositing and ours.
OR and IV refer to OpenRooms [44] and InteriorVerse [91].

5.2. Image-based compositing method comparison

Our evaluation extends to methods that employ intrinsic
image decomposition and generative modeling for object
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Method Confusion (%)

ZEROCOMP OR (ours) 45.0 ± 3.9
EMLight [84] 41.5 ± 3.9
ZEROCOMP IV 35.7 ± 3.7 *
Garon’19 [23] 31.5 ± 3.6 *
Everlight [17] 31.4 ± 3.6 *
ControlCom [85] 19.9 ± 3.1 *
Careaga’23 [11] 5.0 ± 1.7 *
ARShadowGAN [46] 4.8 ± 1.7 *

Table 2. Results of our 2AFC user study indicates the perceived
realism of the composites, sorted by decreasing confusion (perfect
confusion is 50%), and 95% confidence intervals (where “*” indi-
cate a statistically significant difference with ZEROCOMP OR).

compositing. Recent methods like AnyDoor [12] and Con-
trolCom [85] similarly employ a generative framework with
a Stable Diffusion backbone, whereas Careaga et al. [11]
also rely on intrinsic image decomposition for compositing.
Finally, we include ARShadowGAN [46] as an example of
shadow generation techniques. All of these methods ex-
pect as input an image of the object placed in a different
scene. We simulate this setup by rendering the object with
a randomly sampled environment map from our test set, and
feeding it to the methods, letting them do the task of relight-
ing appropriately based on the target background.

The quantitative results in Tab. 1 (middle bracket) show a
superior score for ZEROCOMP in all metrics against image-
based compositing methods. We identify two main issues
with other approaches: they tend to 1) modify the object
itself or its pose [12, 85]; or 2) generate shadows of lim-
ited quality [11, 46]. In contrast, ZEROCOMP preserves the
original appearance and pose of objects and generates com-
plex and realistic shadows even without access to the full
3D model of the virtual object.

5.3. Human perceptual study

While quantitative metrics provide a measure of image
quality, recent evidence has shown they do not correlate
with human perception when evaluating the realism of com-
posited images [27]. We therefore conduct two user studies
to evaluate the perceived realism of the images produced by
our method compared to other established approaches.

We first designed a two-alternative forced choice (2AFC)
task where participants viewed a series of image pairs. Each
pair featured a ground truth composite and a prediction from
one method, both showing the same object on the same
background. We asked observers, “The same virtual object
has been inserted in these two images. Click on the image
that looks the most realistic” (see supp. for instructions).
To reduce bias, we randomized the left/right placement of
ground truth and predicted images. Each user evaluated 20
pairs per method, totaling 160 comparisons. We randomly
sampled a non-overlapping subset of the test set for each
method. In this scenario, a confusion rate of 50% would

Method PSNR↑ SSIM↑

Radius
λ = 0.5 32.8 0.973
λ = 1.0 (Ours) 31.7 0.970
λ = 1.5 30.8 0.967

Input

w/o depth and normals 31.8 0.966
w/o normal 31.6 0.965
w/o depth 32.1 0.969
baseline 31.9 0.969

Table 3. Ablation study on the shading radius, different inputs.
The baseline and input-ablated models are trained for 220k steps.

indicate that users find the generated composites indistin-
guishable from the ground truth on average. We selected the
three lighting estimation methods [17, 23, 84] and the three
image-based methods [11,46,85] with the highest PSNR. A
total of N = 47 observers participated in our study.

As shown in Tab. 2, our method trained on OpenRooms
achieves a 45% confusion rate, indicating a strong prefer-
ence for the realism of our composites. ZEROCOMP trained
on InteriorVerse (IV) doesn’t perform as well, presumably
due to weaker shadows. The method with the best quantita-
tive score from Tab. 1, Garon’19 [23], is ranked fourth with
31.5%, corroborating recent findings that image evaluation
metrics do not correlate well with human perception [27].
We achieve statistically significant better results against all
methods, except with EMLight. We therefore conduct a sec-
ond user study where N = 19 participants were shown 100
pairs of images, each pair containing one result from ZE-
ROCOMP and the other from EMLight, in randomized or-
der. Users selected our method 55.4 ± 2.2% of the time,
demonstrating preference for ZEROCOMP.

5.4. Ablations

In Tab. 3, we ablate shading radius (“Radius”), vari-
ous intrinsic maps as input (“Input”). The quantitative dif-
ference due to the shading radius is confirmed visually in
Fig. 5. However, metrics contradict visual observations
when it comes to using different inputs. From Fig. 6, not
using the depth or normal maps results in a loss of realism.

5.5. Extensions

Material editing. By training on additional intrinsic maps
such as roughness and metallic available in the InteriorVerse
dataset [91], ZEROCOMP can also adjust the materials of
the virtual object. In Fig. 7, we modify the roughness (RG)
and metallicity (MT) to demonstrate the effectiveness of
ZEROCOMP in handling more advanced materials.
Outdoor images. Despite being trained only on indoor im-
agery, ZEROCOMP also generalizes to outdoor scenes and
can generate realistic shadows, as demonstrated in Fig. 8.
2D object compositing. ZEROCOMP can also be applied
to 2D objects segmented from real images, where a 3D
model is not available. Here, we rely on intrinsic estima-
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λ = 0.5 λ = 1.0 λ = 2.0

Figure 5. Effect of the shading mask radius λ. Generated im-
ages (top) and their associated masked shading maps (bottom) are
shown. A small radius (λ = 0.5) results in unrealistic shadow
shapes, while a large radius (λ = 2.0) produces overly large shad-
ows and a loss of shading detail in the scene.

ia {ia, in} {ia, id} {ia, in, id}
Figure 6. Ablation on intrinsic conditionings: Training using dif-
ferent combinations of depth (id) and normals (in), while con-
sistently retaining the albedo (ia). Normals aid the network in
generating sharp object details, whereas depth enhances shadow
strength. Using both conditionings provides optimal results.

Original RG = 0,MT = 1 Original RG = 0,MT = 1

Figure 7. Training ZEROCOMP on InteriorVerse [91] significantly
enhances its performance with shiny objects by allowing precise
control over roughness and metallic properties.

Figure 8. ZEROCOMP generalizes to outdoor scenes, despite being
trained exclusively on indoor scenes. Note how the object shading
and cast shadows seamlessly blend with the target background.

tors (Sec. 3.2) to estimate the object depth and normals. We
use the RGB as the albedo to avoid detrimental noise in
the image texture while keeping the rest of the pipeline un-

Figure 9. Using ZEROCOMP to composite real 2D objects without
access to a 3D model. Intrinsic maps for both the object image and
the target background are estimated separately, then composited
together and fed to our pipeline. Examples are displayed left to
right: object, target background, and predicted composite.

changed. For demonstration purposes, the object was seg-
mented and placed in the target image manually. Fig. 9
shows several such examples, showing our method can be
easily extended to the case of 2D object compositing.

6. Discussion
We present ZEROCOMP, a novel approach for creat-

ing realistic image composites with intricate lighting inter-
actions between virtual objects and scenes. Our method
achieves zero-shot compositing by training on the simpler
proxy task of reconstructing an image from its intrinsic lay-
ers using readily available datasets, simplifying the training
procedure. Moreover, we present a comprehensive eval-
uation dataset for 3D object composition in real images,
where our method exhibits favorable performance com-
pared to various light estimation and generative techniques.
Through an extensive user study using the same dataset, we
demonstrate that ZEROCOMP achieves the highest percep-
tual scores among recent methods. This also suggests the
need for reliable quantitative metrics for lighting estimation.
Limitations. ZEROCOMP depends on intrinsic estimators
to decompose the background image. While the model
shows robustness to these estimators (see supplement), even
with synthetic training data, errors in their predictions can
affect rendering quality. Nonetheless, ZEROCOMP has
demonstrated impressive results when fully leveraging es-
timated albedo and shading for both the background and
inserted objects (see Fig. 9), suggesting that non-synthetic
training data could enhance the model’s robustness.
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