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Abstract

The semantic reconstruction of a scene relies in part on
the curvilinear structure inherent in images. The recovery
of curvilinear structure is not only key to the representation
of objects via ridges and other object curves but is also crit-
ical to the reconstruction from texture-poor images which
lack a sufficient number of features. Prior methods advo-
cate for the recovery of curve segments from images and re-
constructing these into an organized collection of 3D curve
segments often referred to as the 3D curve sketch, which
serves as the basis for further reconstruction of curves and
surfaces. Observing that the process of edge grouping can
lead to fictitious curves or missing veridical groupings, this
paper advocates for a reconstruction of curvilinear struc-
ture directly from image edges in the form of a 3D edge
sketch. The multiview reconstruction of edges faces sig-
nificant combinatorial challenges which are effectively ad-
dressed in this paper. We demonstrate through experiments
that the 3D edge sketch recovers a vast majority of the
curvilinear structure and is a reliable substrate from which
3D curves can be constructed.

1. Introduction

The 3D reconstruction of the world from a series of
images has generally relied on finding correspondences
among point features in multiple views and triangulation
of these correspondences into an unorganized cloud of 3D
points [22]. A significant drawback of this approach is that
some scenes have featureless surfaces or surfaces lacking a
dense collection of point features. At other times, there is a
dense collection of 3D points, but there is repeated textures
or a large proportion of outliers, say due to a wide baseline,
such that a 3D reconstruction via feature points is not viable.
Furthermore, even if a 3D set of points can be successfully
reconstructed, it may not be sufficiently dense to be orga-
nized as a mesh. Finally, even if a mesh can be constructed,

: Equal contribution.

Figure 1. Images taken from multiple views are used to reconstruct view-
stationary contours such as ridges, texture and reflectance edges.

(a) (b) (c)
Figure 2. (Top Row) A few views of a 3D object with 2D edges superimposed
in cyan. (Bottom Row) The ground-truth (GT) (a), serves as a reference to
compare the 3D Curve Sketch [6] (b) to the 3D Edge Sketch (c) proposed
here. The 3D Edge Sketch is richer in edge content, not suffering from gaps in
the 3D Curve Sketch, and does not introduce a significant set of false positives.

such a representation does not lead itself to a semantic inter-
pretation. For example, the mesh representation of a chair
does not organize points into surface patches correspond-
ing to the seat, the back, etc. As a more concrete example,
consider viewing a cube from multiple directions. Even if
the cube is densely textured, at best it is reconstructed as a
dense collection of 3D points that are meshed as a single
surface, often smoothed around ridges: there is no notion of
6 faces meeting at 12 ridges and 8 vertices.

A curve-based reconstruction can often address these
shortcomings and complement the point-based reconstruc-
tion: (i) when point features are lacking, there are often
ample curve segments, (ii) curves are more stable to illu-
mination and view changes, (iii) a curve-based reconstruc-
tion represents surface ridges so that it provides a scaffold
on which surface reconstruction can be organized into se-
mantically meaningful surface patches, e.g., for the chair or
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cube examples considered earlier.
Fabbri et al. [6] pioneered multiview curve-based recon-

struction in the form of a curve sketch which is an unorga-
nized collection of 3D curves, and later as a curve draw-
ing [30] which is a graph of 3D curves. Surfaces are then
reconstructed by connecting curves using multiview lofting
and enforcing multiview consistency [31]. The approach
begins with extracting 2D curve fragments from each im-
age by edge detection and edge grouping. This process
critically relies on an orientation-corrected third-order edge
detection [16] which gives reliably localized subpixel edge
position and edge orientations, followed by a reliable group-
ing first as curvels and then as curve fragments [9]. Each
curve fragment in each view then seeks a pairing with other
curve fragments falling in epipolar bands from other views,
and each pairing constitutes a hypothesis. The hypothesis is
effectively a 3D curve fragment that can be reprojected to
other views. Each 3D curve hypothesis seeks support from
edge content in each projected view. The majority of the hy-
potheses are incorrect and do not find such support, where
the veridical hypothesis gathers significant support and gets
verified as a member of the 3D curve sketch.

The above process relies on the correct grouping of edges
into curves from which a sketch is built. The question then
arises whether it is possible to form a 3D hypotheses with-
out grouping, by directly pairing 2D edge elements across
pairs of views to form 3D edges hypotheses and verify them
by projecting on other views? If this is possible, then the re-
constructed 3D edge can be grouped into 3D curves in 3D
space. The conjecture of this paper is that by directly work-
ing with edges, and not curves, the process does not rely on
the correctness of the 2D edge grouping. The drawbacks of
such an approach, however, is that (i) the number of edge
pairs considered is significantly higher, and (ii) there are
significantly more outliers, since the cluttered edges which
are filtered out in an edge grouping process must be dealt
with. This paper explores the direct reconstruction of 2D
edges into an unorganized set of 3D edges, referred to as
the 3D Edge Sketch. The resulting reconstruction could
then serve as a sound basis for a more globally consis-
tent grouping of 3D edges into 3D curves. Figure 2 il-
lustrates the contribution. For the benefit of the research
community, the code is made publicly available at https:
//github.com/C-H-Chien/3D_Edge_Sketch.

2. Related Works
Beyond 3D curve sketch and drawing [6, 30, 31], recon-

structing edges, lines, or curves have been motivated early-
on by the need to reconstruct thin structures, e.g., wire
frames, art, and hairs [4, 13, 14, 18, 20, 24, 27, 32]. They
typically first construct a cloud of 3D points, followed by
extracting curves from a curve bundle [23] or clustered line
segments [27]. Also, 3D edge reconstruction of an object

has also become an important problem as 3D sharp, geo-
metric edges can be used as an abstraction of a complex
object shape, facilitating tasks such as surface reconstruc-
tion [7,31] and shape reconstruction [25]. Given a 3D point
cloud, many methods extract edges using geometric fea-
tures, e.g., normals and curvatures [10, 15, 21, 35, 38], oth-
ers formulate 3D edge detection as a classification problem
based on the edge neighborhood [2, 12, 37], or learn para-
metric curves from 3D edges given point clouds [5, 24, 34].
NerVE [39] learns 3D edges from a point cloud by rep-
resenting edges as grids of volumetric cubes converted to
piece-wise linear curves. These methods give promising re-
sults, yet are very sensitive to noise and non-uniform den-
sity of a point cloud arising from noisy observations such as
real images. This motivates another stream of 3D edge re-
construction: rather than acting in a representation space of
3D points, reconstructing 3D edges from observation space
of images avoids the reliance on a perfect point cloud.

Semantic segmentation has been used on images from
vehicles to estimate ground surface, constructing 3D edge
road maps arising from 2D semantic contours [11]. Simi-
larly, others construct indoor topological contour maps [33].
These methods are incremental and require an ordered se-
quence of images. Multivew stereo 3D edge reconstruc-
tion [3] triangulates 2D edge correspondences to 3D edges
from a set of unordered images. The 2D edge correspon-
dences are hypothesized and verified through spatial con-
sistency with 3D point cloud and epipolar-geometric sup-
ports. It has shown promising qualitative results against
OpenMVG [26] when used for constructing meshes, but
an initial point cloud is necessary. Also, edge orientation
which is a strong cue, is ignored, leading to false corre-
spondences. Deep learning methods such as Neural Edge
Field (NEF) [36] create 3D parametric edges from multi-
ple 2D edges, but are limited to simple objects, e.g., cubes
or chunks [17], often require scene specific training and
careful preparation of the dataset is necessary for training,
the network. Another recent learning-based 3D edge re-
construction, namely, EMAP [19], showed significant im-
provement over NEF for both synthetic, simple objects and
real, large complicated scenes. Nevertheless, it also requires
scene specific training, i.e., its model trained on one scene
can not be generalized to another scene.

e Edge, e “ pγ, θq

eni Edge i in view n

γ An image location γ “ pξ, η, 1q
T

θ orientation 0 ď θ ă π
Γ A 3D point, Γ “ pX,Y, Zq in world coordinate
Γn A 3D point in the nth camera coordinate system Γn

“ RnΓ ` Tn

Tn A 3D unit orientation vector in the nth camera coordinate system
pRn, Tnq Rotation matrix and translation vector of the nth camera
pRij , Tijq R and T relating ith camera to jth camera, Γi

“ RijΓ
j

` Tij

ρ Depth of a point Γ “ ργ

Ci
n The ith curve segment in the nth image

Table 1. Notations used in this paper.
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(a) (b) (c)

(d) (e) (f) (g)
Figure 3. (a) Curve segments sharing a common epipolar band are paired as a 3D curve hypothesis in the 3D curve sketch [6], i.e., C1 is paired with C1

2 ,
C2
2 , C3

2 , C4
2 , but not C5

2 . (b,c,d,e) Only curve subsegments in common epipolar bands (pink) are paired. (f) Curve must be broken into segments at epipolar
tangencies. (g) A projected curve (red) seeks support from edges.

(a) (b) (c) (d) (e)
Figure 4. From [30, 31]: (a) four selected views of a scene, (b) 3D curve sketch, (c) enhanced curve sketch, (d) 3D drawing, and (e) surface reconstruction.

3. 3D Curve Sketch vs 3D Edge Sketch

Fabbri and Kimia [6] presented a general approach for
finding corresponding curve segments and reconstructing a
cloud of 3D curve segments, the 3D curve sketch. Their ap-
proach uses the epipolar constraint to find potential matches
for a curve segment in one view with other curve segments
in other views. Figure 3 illustrates this approach with an
example where a curve C1 in hypothesis view H1 explores
pairing with curves in the corresponding cpipolar band in
the second hypothesis view H2, i.e., C1

2 , C2
2 , C3

2 , and C4
2 .

Consider a potential pairing of C1 and C1
2 where the com-

mon epipolar band delineates a segment of C1 and C1
2 that

have a set of corresponding points. These two sub-segments
of C1 and C1

2 are then triangulated to form a 3D curve seg-
ment hypothesis, which may or may not be correct, pending
support from other views. When curve segments become
tangential to the epipolar line, they must be divided into
segments and treated distinctly, Figure 3(f).

The vast majority of 3D curve segment hypotheses are
not veridical. The veridical pairings can be differentiated
from non-veridical pairings by probing additional views.
Each 3D curve hypothesis is projected onto other views
(validation views) where evidence for it is sought in the
form of consistency with the curve structure, Figure 3 (g).
Since curve grouping can often group unrelated edges, or
not group edges that do lie on a curve, validation evidence
is accumulated directly from the edge map by counting the
number of edges supporting a projected hypothesis curve,
Figure 3(g). Generally, four validation views with sufficient
edge evidence suffice to validate a 3D curve segment.

Subsequent work [30] addresses several shortcomings:
gaps resulting from epipolar breakup of curves, redundancy

arising from multiple hypothesis representing the same 3D
curve, etc. The resulting enhanced curve sketch is referred
to as a 3D curve drawing, Figure 4, which is the basis of
generating surfaces, Figure 4(e).

The current paper similarly aims at reconstructing 3D
curve structure, but it takes a drastically different approach:
The approach in [6] critically relies on the grouping of
edges into curve segments. It is well-known, however, that
each grouping can join unrelated edges at times, or leave
behind gaps of ungrouped edges which are part of the same
curve. In other words, while [6] produces meaningful 3D
curve structure, it also inherits the drawbacks of the 2D
edge grouping process without recourse to correcting these.
It thus leaves behind both gaps and 3D curves which could
have been reconstructed, but are not due to inappropriately
grouped edges or ungrouped edges.

This paper proposes to switch the order of grouping and
reconstruction by first reconstructing 3D edges and then
grouping these to produce 3D curve segments. The pro-
cess of reconstructing 3D edges to form a 3D Edge Sketch,
however, is quite challenging: an advantage of grouping be-
fore reconstruction is that the thousands of edges are re-
duced to dozens of curve segments. Each curve segment
may intersect with a dozen curve segments in its epipolar
band and then face the counting of edges in the vicinity of
projected hypotheses. In contrast, each edge will be paired
with significantly more edges, both those that are veridical
and those which are not. An edge will also pair with multi-
ple close-by edges representing the same curve, leading to
highly redundant hypotheses. Furthermore, in the valida-
tion process, each 3D edge hypothesis will have to consider
many edges in a neighborhood of the projected 3D edges
due to errors in edge localization and poses. As a result, or-
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(a) (b)
Figure 5. The pipeline of 3D Edge Sketch: (a) Edges from pairs of views are reconstructed and their union generates the 3D Edge Sketch. (b) The
reconstruction of 3D edges from two hypothesis views H1 and H2 iterates over all edges of H1 pairing with all edges of H2 in the corresponding epipolar
wedge to form 3D edge hypothesis. These hypotheses are verified only when a sufficient number of validation views show supporting edges consistent with
the projection of the 3D edges on that view.

(a) (b) (c) (d)
Figure 6. (a) A pair of corresponding true edges pγ̂1

i1
, γ̂2

i2
q are perturbed to observed locations pγ1

i1
, γ2

i2
q, which may not necessarily be on corresponding

epipolar lines. (b) γ̂1
i1

lies within a circle of radius ∆ at γ1
i1

giving rise to a pencil of epipolar line bounded by tangents to the circle. This wedge of epipolar
lines corresponds to a wedge of epipolar lines in image 2, where γ̂2

i2
must lie. (c) The corresponding wedge must to dilated by ∆ to account for perturbation

of γ2
i2

. (d) An approximation of this region by an epipolar wedge. Region sizes are magnified for illustration purposes.

ders of magnitude more hypotheses are generated, Figure 5.
There is a silver lining to such a combinatorial night-

mare, however: (i) all processes are independent and can be
done in parallel, leaving the possibility of parallel compu-
tation and the use of GPUs, which is leveraged in this pa-
per, (ii) the 3D edge hypotheses are consistent across views
while 3D curve hypotheses are not: When using curve seg-
ments, different hypothesis pairs of views generate different
groupings, so that 3D curve hypotheses are not consistent
across different selections of hypotheses views. When using
edges, however, an edge that validates a 3D edge hypothesis
will no longer need to be considered in forming an alternate
hypothesis as they are already tagged as reconstructed. As
the number of tagged edges increases, the number of free
edges available for forming a 3D edge hypothesis rapidly
decreases, thus taming the combinatorics.

The advantage of forming a 3D edge sketch directly
from a 2D edge is clear: (i) the process is immune to 2D
edge grouping errors, (ii) the subsequent 3D grouping of
3D edges into 3D curves (not considered in this paper) can
rely on multiple view grouping cues. This type of multiview
edge grouping into curves has never been tried before; the
3D edge sketch provides a solid basis for that. The com-
parison of ungrouped 3D edges to the 3D curve sketch in
Figure 2 clearly shows that (i) gaps evident in the 3D curve
sketch are not present in the 3D edge sketch, (ii) the false
positive edges in the 3D edge sketch are comparable to the
3D curve sketch even without the benefit of grouping.

4. Formation of a 3D Edge Hypothesis

The first task is to form 3D edge hypotheses. Consider a
set of views In, n “ 1, 2, ..., N and let eni , i “ 1, 2, ...,Mn

represent the Mn edges in the nth view, where each edge is
represented as e “ pγ, θq, where γ “ pξ, η, 1qT is its loca-

tion and 0 ď θ ă π is its orientation, Table 1. Note that ori-
entation is typically not used particualrly due to the lack of
orientation estimation, e.g., PiDiNet [29] and DexiNet [28].
However, edge orientation is key to multiview validation.
Furthermore, edge orientation is a strong grouping cue and
should not be dismissed. As such, we use a third-order edge
detection scheme [16] which provides highly accurate and
reliable edge orientation, and a dense collection of highly
accurate edges so that there are typically several edges, typ-
ically 1-3 edges, per pixel. This process leads to a rich pool
of dense, spatially accurate, 2D edges per pixel with accu-
rate orientations.

The formation of a 3D edge hypothesis begins with se-
lecting an edge en1

i1
in H1 and then exploring possible

groupings with other edges en2
i2

in H2, Figure 6. A pair
of corresponding edges pen1

i1
, en2

i2
q must lie on correspond-

ing epipolar lines. However, two types of errors, namely,
edge localization error and relative pose error, perturb this
relationship.

First, consider the edge localization error, where the true
edge ê “ pγ̂, θ̂q is observed under perturbation as e “

pγ, θq. A simple model of perturbation limits |γ̂ ´ γ| ă ∆,
say ∆ “ 0.3 pixels, i.e., the true location of an observed
edge is within a circle of radius ∆ pixels. More specifi-
cally, consider a pair of true edge correspondences pγ̂1

i1
, γ̂2

i2
q

which are observed under perturbation as pγ1
i1
, γ2

i2
q. Fig-

ure 6(a) observes that while pγ̂1
i1
, γ̂2

i2
q are on the corre-

sponding epipolar lines (shown in red), pγ1
i1
, γ2

i2
q do not

necessarily lie on corresponding epipolar lines, shown in
green and blue, respectively. Since the location of γ̂1

i1
is not

known, but restricted to lie within a circle of radius ∆ from
γ1
i1

, this generates a pencil of epipolar lines which together
with their corresponding counterparts are shown in Figure
6(b). This defines an epipolar wedge, Figure 6(c) left, and
its corresponding epipolar wedge, Figure 6(c) right, repre-
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(a) (b) (c) (d)
Figure 7. Estimating spatial errors ∆: Edges of an image (a) taken along
linear curves shown in (b, c) are fit with a line and distribution of edge
distances to this line are plotted, (d) suggesting an estimate of ∆ of „0.3
pixels.

(a) (b)
Figure 8. Perturbation of the epipolar correspondence between H1 and H2

is shown for (a) ∆R “ 0.25%=R and (b) }∆T } “ 0.5% }T }.

senting the region where γ̂2
i2

must lie. Since γ̂2
i2

is also ex-
periencing perturbation of its own ∆, the wedge must be
dilated by ∆ and this region is where γ2

i2
must be sought,

Figure 6(c), namely, the union of green and red regions.
Since epipolar lines can easily be identified with an epipo-
lar angle, an epipolar wedge is identified by an epipolar an-
gle interval and similarly the corresponding epipolar wedge.
Thus, it is useful to approximate this region with the small-
est epipolar wedge that contains its region, Figure 6(d),
shown in blue. This is typically found by the two epipo-
lar lines going through the boundaries of the exact region.
Note that these regions are in fact much smaller and have
been magnified here for illustration purposes.

The approximate region helps with efficient indexing to
identify edges which can potentially pair with the first edge
in H1. Once these edges are identified, however, their mem-
bership in the exact region identified in Figure 6(c) is tested.
The value of ∆ is experimentally determined from images
with long linear edges: The detected edges are fit with a
line minimizing least square errors and the distribution of
the distance and orientation error with respect to this line is
obtained, Figure 7.

Second, pose perturbation also leads to the perturbation
of the expected location of a corresponding feature. Specif-
ically, the perturbation of the true pose pR̂, T̂ q is pR, T q

where R “ ∆RR̂ and T “ T̂ ` ∆T . The perturbation
of pose p∆R,∆T q has six degrees of freedom, but they are
generally quantified by only two numbers, namely, =∆R
the turn angle of ∆R in an angle-axis representation, and
}∆T }, the magnitude of ∆T , Figure 8.

This process results in the formation of a 3D edge hy-
pothesis formed by pairing 2D edges. Figure 9 shows an
example of the number and distribution of pairings for an
edge selected in H1, with edges falling in the correspond-
ing epipolar wedge in H2.

5. Validating 3D Edge Hypothesis
The validation of a 3D edge hypothesis formed from a

pair of edges en1
i1

“ pγn1
i1
, θn1

i1
q and en2

i2
“ pγn2

i2
, θn2

i2
q is

Figure 9. An edge from one hypothesis image (Left) pairs with edges
falling within the corresponding epipolar wedge in a second hypothesis
view (Right).

based on the consistency of its projection with the edge in
the validation views. It should be noted that it is not neces-
sary to explicitly form a 3D edge hypothesis. Rather, the
edge pairs pen1

i1
, en2

i2
q are directly mapped to a validation

view as pe3pγ3, θ3qq, as shown below with proofs provided
in the supplementary material.

Proposition 1. Let an edge e1 “ pγ1, θ1q in image 1 cor-
respond to an edge e2 “ pγ2, θ2q in image 2 where the
relative pose of the camera is pR21, T21q. Then the corre-
sponding edge in a third view e3 “ pγ3, θ3q with relative
pose to camera 1 pR31, T31q is given by

γ3 “

“`

bT3 T21

˘ `

bT3 RT
21γ2

˘

´
`

bT3 RT
21T21

˘‰

R31γ1
`

“

1 ´
`

bT3 R21γ1
˘ `

bT3 RT
21γ2

˘‰

T31
“`

bT3 T21

˘ `

bT3 RT
21γ2

˘

´
`

bT3 RT
21T21

˘‰ `

bT3 R31γ1
˘

`
“

1 ´
`

bT3 R21γ1
˘ `

bT3 RT
21γ2

˘‰ `

bT3 T31

˘

.

(1)

t3 “

R13

“

pγ1 ˆ t1q ˆ RT
21 pt2 ˆ γ2q

‰

´ bT3
“

pγ1 ˆ t1q ˆ RT
21 pt2 ˆ γ2q

‰

γ3

}R13

“

pγ1 ˆ t1q ˆ RT
21 pt2 ˆ γ2q

‰

´ bT3
“

pγ1 ˆ t1q ˆ RT
21 pt2 ˆ γ2q

‰

γ3}

, (2)

where b3 “ r0, 0, 1sT and ti “ rcospθiq, sinpθiq, 0sT .

Note that the expected location of validation edges is
the intersection of the two perturbation regions bounded by
green lines in figure 6(d), one from each view, Figure 10.
Any edges within his epipolar quadrilateral in green are
consistent in location with the 3D edge hypothesis. Orien-
tation of the validating edge must also be within a threshold
of ∆θ “ 15˝ of the projected 3D edge hypothesis orienta-
tion. The presence of a single validating edge is sufficient to
count that view as a validating view. Each 3D edge hypoth-
esis with a minimum of M “ 4 view is considered as val-
idated. This approach presents three significant challenges
that must be addressed.
Combinatorial Explosion: Multi-level Thresholding:
The process of forming 3D edge hypotheses generates a
large number of edges, the product of the number of edges
N and the number of edges within the epipolar wedges N1,
which is itself proportional to N . A key observation to re-
ducing the N2 nature of growth of hypotheses is that im-
age edges arising from the same source typically, but not
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Figure 10. A selected edge in H1 can correspond to any edge shown in
blue, in the green area of H2 and in the validation view V1. Consider any
selected edge in H2, shown in green. The corresponding edges in V1 to
this edge are shown red edge in V1. Thus, the intersection of blue and red
edges in V1 shown in green, correspond to the edge pair. Edges whose
orientation is also consistent verifies the hypothesis.

always, have similar edge contrast. Initially only edges
matching the same constrast level are considered. All edges
that are validated and confirmed as arising from the same
3D edge hypothesis are removed from the pairing process.
The process is then repeated with a lower but required level.
The advantage, say for an eight-step contrast subdivision
is that typically N{8 edges are paired with N1{8 edges in
eight steps, thus reducing the computation significantly.
Combinatorial Explosion: Parallelization: While some
parts of the hypothesis construction are incremental or se-
quential, the consideration of each edge in H1 in the pro-
cess of forming hypotheses as well as the validation process
over many views are independent and thus present valuable
opportunities for parallelization. Using all the scenes of a
ABC-NEF dataset [36], we have experimented both with
a CPU multi-threading execution and with a GPU imple-
mentation. On average, we found that using a 32-core CPU
leads to a speed up of 9.69ˆ(„34.3s) while using an V100
GPU led to a speed up of 617.7ˆ („55.4ms) for recon-
structing edges of a pair of hypothesis views and 48 con-
firmation views, with about 3K edges each, thus putting
the process into practical range. Note that the recent deep
learning approaches, namely, NEF [36] and EMAP [19],
running on V100 GPU require on average 4.77 seconds and
5.69 seconds for all scenes in the ABC-NEF dataset, respec-
tively, where each scene has to be individually trained using
3-6 hours.
Combinatorial Explosion: Epipolar Angle Indexing:
One approach in addressing combinatorial explosion is to
make the process more efficient. A key idea is to index
edges by their epipolar angles pair in the combinatorial pro-
cess so that edges within an epipolar wedge can be quickly
identified. Specifically, for each pair of views, the epipolar
angle of each edge in each of the two views is calculated and
sorted in an ascending order. Each epipolar angle θ1 in im-
age 1 transforms to epipolar angle θ2 in image 2 determined
by

tanpθ2q “ ´
f11 ` f12 tanpθ1q

f21 ` f22 tanpθ1q
, (3)

where fij are the elements of the fundamental matrix F12.
Details are given in the supplementary material.

6. Overall Framework

The previous sections showed how 3D edge hypotheses
can be formed from edges in a pair of hypothesis views and
then validated based on other views. It remains unclear,
however, that given

`

N
2

˘

pairs of N views, which pairs of
views must be considered and in what order. First, when
a 3D edge is observable in M views, there are

`

M
2

˘

dis-
tinct hypotheses, representing a high degree of redundancy.
Such redundancy can be reduced by sampling views. How-
ever, certain edges might be occluded so that they only ap-
pear in select views, preventing an apriori determined order
of sampling the views. Second, recall that edge pairs from
a narrow baseline pair of images cannot be stably recon-
structed, nor stably remapped onto other views. Thus, the
approach adopted here is an iterative one: the image pair
with the widest baseline is selected first and all the 3D edge
hypotheses in this pair are formed and validated. Those
edges in the validation views which support these 3D edge
hypotheses are then tagged as belonging to this hypothesis
and prevented from generating their own hypotheses when
the validation view changes role to a hypothesis view in
later iterations. Of course if this edge is only coinciden-
tally supporting a hypothesis, there is a danger of missing
valid 3D edge hypotheses arising from it. However, the ex-
pectation is that each 3D edge is visible in many views so
that one inappropriate dismissal is not catastrophic.

Once all the 3D edge hypotheses from the initially se-
lected pair of views are considered, a second pair of views
is selected. The selection favors images that still retain a
large number of untagged, available edges as well as im-
age pairs that have a large baseline. The process is repeated
for this image pair and a third image pair is next selected.
The process continues until 90% of the 2D edges in each of
the views are tagged as either forming a 3D edge hypothe-
ses or validating one. The result is an unorganized cloud
of 3D edges, each of which knows which two image edges
generated it as a hypothesis and which edges validated it.
It is noteworthy that while the position and orientation of
each 3D edge is reconstructed only from the two views that
formed its hypothesis, there is remarkable alignment among
neighboring edges. We are currently exploring multiview
triangulation [8] of edges from all the edges that formed and
validated each hypothesis for an even better alignment, one
which can readily support 3D grouping of these 3D edges.

7. Experiment Results

The experimental results aim to demonstrate that 3D
edge sketch captures more of the 3D curvilinear structure
than the 3D curve sketch, while only minimally increasing
false positives. Increased recall without increased false pos-
itive rate would validate the idea of reversing the order of
grouping and 3D reconstruction. Such a high-recall array
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CAD Model GT Edges NEF EMAP 3D Curve Sketch 3D Edge Sketch

Figure 11. Qualitative comparisons between NEF [36], EMAP [19], 3D curve sketch [6], and 3D edge sketch on the ABC-NEF dataset [17]. 3D edge sketch
provides a clean, complete, and natural reconstruction compared to other existing methods. More results can be found in the supplementary materials.
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Figure 12. Qualitative comparisons between NEF [36], EMAP [19], 3D curve sketch [6], and 3D edge sketch on the DTU dataset [1].

of 3D edges would then serve as a substrate for 3D group-
ing into 3D curves.

Datasets. Both synthetic dataset ABC-NEF [17, 36] and
real world dataset DTU [1] are used for evaluations. Specif-
ically, the ABC-NEF dataset provides 115 textureless syn-
thetic CAD models, each imaged from 50 views together
with parametric ground-truth curves and edges. The DTU
dataset provides scans of objects with 48-63 views. We se-
lected six scenes containing various DTU objects for our
experiments.

Baselines Approaches. Aside from the 3D curve sketch,
the proposed 3D edge sketch is compared with the state-
of-the-art learning-based approaches, i.e., NEF [36] and
EMAP [19]. NEF gives 3D parametric curves while EMAP
provides 3D edges. In this comparison, the most favorable
settings for these approaches are used: the third-order edge
detection [16] is used for curve sketch, and PiDiNet [29]
and DexiNet [28] are used for 2D edge detection for NEF
and EMAP, respectively. Since the PiDiNet [29] and Dex-
iNet [28] edge detection methods do not provide edge ori-
entation, we opt to use the third-order edge detection. We
train NEF and EMAP from scratch using their suggested
parameters for all scenes. The hypothesis views and con-
firmation views of the curve sketch process is the same as
that of the edge sketch. Note that we do not employ [3] for
comparisons using ABC-NEF dataset because [3] requires

an initial point cloud as its input, and ABC-NEF dataset
hosts textureless objects which render no initial point cloud
for evaluating [3].
Metrics. For quantitative comparisons using the ABC-
NEF dataset, we follow the metrics used in [19,36], i.e., Ac-
curacy (Acc), Completeness (Comp) in millimeters, Preci-
sion (Pτ ), Recall (Rτ ), and F-score (Fτ ) in percentage with
a threshold τ for comprehensive evaluations.
Qualitative Evaluations. Figure 11 and 12 provide a qual-
itative comparison of four approaches on examples from the
ABC-NEF and the DTU datasets, respectively. Observe that
there are significant gaps in all methods except 3D Edge
Sketch. In addition, in 3D curve sketch, some curves which
were entirely absent are now visible. Furthermore, NEF and
EMAP present noisy curves/edges while 3D edge sketch is
mostly clean. Figure
The Role of Hyperparameters. An important question is

Figure 13. 3D edge sketch results without (Left) and with the orientation
constraint (Right).
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Methods Representation Acc(Ó) Comp(Ó) P5pÒq P10pÒq P20pÒq R5pÒq R10pÒq R20pÒq F5pÒq F10pÒq F20pÒq

NEF Curves 14.2 15.3 7.2 52.3 87.2 16.0 66.6 94.1 9.7 57.7 89.6
EMAP Edges 9.4 9.3 43.1 82.7 93.4 47.2 79.4 91.3 51.7 85.9 91.9

3D Curve Sketch Curves 19.9 17.5 45.7 84.9 94.0 9.7 33.3 69.4 15.8 49.2 78.9
3D Edge Sketch Edges 11.4 4.8 57.6 90.3 95.8 42.9 82.3 94.4 49.2 88.0 93.6

Table 2. Quantitative comparisons between NEF [36], EMAP [19], 3D Curve Sketch [6], and 3D Edge Sketch on the ABC-NEF dataset [17].

Figure 14. Comparison of 3D edge sketch results with different values of
∆, for (Left) ∆ “ 0.1 pixels, (Middle) ∆ “ 0.3 pixels, and (Right)
∆ “ 1.0 pixels, while ∆θ “ 15° and N “ 4 views.

whether the method is sensitive to the choice of hyperpa-
rameters, namely, the accuracy of features ∆, the accuracy
of orientation ∆θ, and minimum number of confirmation
views N . Figure 13 qualitatively demonstrates the critical
significance of employing orientation in the process, while
Figure 14 qualitatively demonstrates the effect of varying
∆.

Figure 15 explores performance for ∆ P

t0.05, 0.08, 0.1, 0.3, 0.6, 1.2u pixels, ∆θ P

t1°, 2°, 5°, 10°, 15°, 30°u, and N P t4, 6, 8, 10, 12, 16u.
The approach is to keep two of the three parameters
fixed and use the third as the latent variable generating a
precision-recall curve. Specifically, the first row selects
∆ “ 0.3 and N “ 4, while ∆θ varies and this generates
the green curve. Similarly, each setting of N creates a
different colored curve. The second row sets ∆θ “ 15°

and sets ∆ different values in turn while for each fixed
setting, N is the latent variable. Finally, the third row sets
N “ 4 and sets ∆ in its various options while ∆θ is the
latent variable. The immediate impression is that precision
is high in all settings (left column), so much so that we
have to zoom in to observe the variations (right column).
The second impression is that recall is highly variable:
the first row suggests that the highest recall is achieved
with N “ 4 but with some drop in precision, although
N “ 6 and N “ 8 are not far behind. The second row
suggests that the best recall is achieved with ∆ “ 1.2
but ∆ “ 0.6 and ∆ “ 0.3 are not far behind and they
have better precision. Similarly, the last row confirms a
similar conclusion. Overall, Figure 14 suggests a wide
basin of appropriate hyperparameters for the system. Our
fixed choice of parameters for all experiments are ∆ “ 0.3
pixels, ∆θ “ 15°, and N “ 4 views.

Quantitative Evaluations. The ground-truth (GT) curves
and edges are available for the ABC-NEF dataset, allowing
for a quantitative comparison with competing approaches.
Table 2 summarizes accuracy (Acc), completeness (Comp)

Figure 15. The precision-recall curve for varying values of ∆, ∆θ, and N
(Left) and their zoomed-in views (Right). These plots suggest an operat-
ing point around ∆ “ 0.3, ∆θ “ 15°, and N “ 4, which is used in all
our experiments, showing the the proposed 3D edge sketch is insensitive
to the hyperparameters.

in mm, and precision (Pτ ), recall (Rτ ), and F-score (Fτ )
in percentage where τ is the threshold. This table shows
that our method generally performs better although in some
cases EMAP does better.

8. Conclusion
This paper advocates for a “reconstruct and then group”

approach in contrast to the 3D curve sketch, which advo-
cated for a “group and then reconstruct” approach. The key
challenge in this approach is a combinatorial explosion in
forming hypotheses between two sets of thousands of edges.
The paper successfully addresses this challenge and demon-
strates a practical approach to the recovery of the vast ma-
jority of curvilinear presentations of a scene. It is expected
that a subsequent grouping of the 3D edges would lead to
high recall and high precision recovery of 3D curves.
Acknowledgment. The support of NSF award 2312745 is
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Qi Tian, Matti Pietikäinen, and Li Liu. Pixel difference
networks for efficient edge detection. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 5117–5127, 2021. 4, 7

[30] Anil Usumezbas, Ricardo Fabbri, and Benjamin B Kimia.
From multiview image curves to 3D drawings. In Com-
puter Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11–14, 2016, Proceed-
ings, Part IV 14, pages 70–87. Springer, 2016. 2, 3

[31] Anil Usumezbas, Ricardo Fabbri, and Benjamin B Kimia.
The surfacing of multiview 3d drawings via lofting and oc-
clusion reasoning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2980–
2989, 2017. 2, 3

[32] Peng Wang, Lingjie Liu, Nenglun Chen, Hung-Kuo Chu,
Christian Theobalt, and Wenping Wang. Vid2Curve: simul-
taneous camera motion estimation and thin structure recon-
struction from an RGB video. ACM Transactions on Graph-
ics (TOG), 39(4):132–1, 2020. 2

[33] Weiran Wang, Huijun Di, and Lingxiao Song. Reconstruct-
ing 3D contour models of general scenes from RGB-D se-
quences. In International Conference on Multimedia Model-
ing, pages 158–170. Springer, 2022. 2

[34] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasac-
chi, Bin Zhou, Ali Mahdavi-Amiri, and Hao Zhang. Pie-net:
Parametric inference of point cloud edges. Advances in neu-
ral information processing systems, 33:20167–20178, 2020.
2

[35] Shaobo Xia and Ruisheng Wang. A fast edge extraction
method for mobile LiDAR point clouds. IEEE Geoscience
and Remote Sensing Letters, 14(8):1288–1292, 2017. 2

[36] Yunfan Ye, Renjiao Yi, Zhirui Gao, Chenyang Zhu, Zhiping
Cai, and Kai Xu. NEF: Neural edge fields for 3d parametric
curve reconstruction from multi-view images. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8486–8495, 2023. 2, 6, 7, 8

[37] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Ec-net: an edge-aware point set consoli-
dation network. In Proceedings of the European conference
on computer vision (ECCV), pages 386–402, 2018. 2

[38] Jie Zhang, Junjie Cao, Xiuping Liu, He Chen, Bo Li, and
Ligang Liu. Multi-normal estimation via pair consistency
voting. IEEE transactions on visualization and computer
graphics, 25(4):1693–1706, 2018. 2

[39] Xiangyu Zhu, Dong Du, Weikai Chen, Zhiyou Zhao, Yinyu
Nie, and Xiaoguang Han. NerVE: Neural volumetric edges

for parametric curve extraction from point cloud. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13601–13610, 2023. 2

3205


