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Figure 1. Illustrating XFLOW in Diffusion Models. (a) Demonstrates the ambiguity in training targets caused by crossing flows, leading

to the XFLOW problem. (b) Shows how our method eliminates flow crossing by increasing the dimensionality of network inputs, thus

resolving the XFLOW problem. (c) Depicts how XFLOW leads to variable sampling results across different steps, undermining deterministic

sampling even for Stable Diffusion [20]. (d) Top: Highlights the discrepancies between outcomes from reduced steps sampling (blue)

versus standard results (from 1000 steps in red) due to XFLOW. Bottom: Our method ensures consistent outputs across different sampling

steps. (e) Top: Exhibits instances where XFLOW causes Out-Of-Distribution (OOD) outcomes in reduced steps sampling (blue) compared

to standard results (from 1000 steps in red). Bottom: Our approach minimizes the occurrence of OOD samples.

Abstract

In diffusion models, deviations from a straight gener-
ative flow are a common issue, resulting in semantic in-
consistencies and suboptimal generations. To address this
challenge, we introduce ‘Non-Cross Diffusion’, an inno-
vative approach in generative modeling for learning ordi-
nary differential equation (ODE) models. Our methodology
strategically incorporates an ascending dimension of input
to effectively connect points sampled from two distributions
with uncrossed paths. This design is pivotal in ensuring en-
hanced semantic consistency throughout the inference pro-
cess, which is especially critical for applications reliant on
consistent generative flows, including various distillation
methods and deterministic sampling, which are fundamen-
tal in image editing and interpolation tasks.

∗Equal contribution.

Our empirical results demonstrate the effectiveness of
Non-Cross Diffusion, showing a substantial improvements
in semantic consistencies at various inference steps and en-
hancing the overall performance of diffusion models.

1. Introduction

Diffusion models, as delineated in recent studies [4, 10,

18, 20, 23–25], have exhibited remarkable capabilities in

image synthesis, bolstering numerous applications such as

text-to-image generation [17, 21], image editing [1, 2, 17,

26], and image inpainting [1, 19]. A key characteristic of

these models is their multi-step generative process, which

not only allows for correction of the diffusion path [25] but

also enhances controllability [5, 7].

Despite these advancements, the inference process in dif-

fusion models typically involves a specific flow, whereas the

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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training process entails random step selections from multi-

ple flows. This randomness often results in a given training

step correlating with diverse flows, creating ambiguity in

target identification from the network’s perspective, as de-

picted in Fig. 1(a). We term this phenomenon ‘XFLOW’.

XFLOW’s emergence during training can hinder the

model’s optimization at certain steps, leading to a spec-

trum of generative issues. Notably, it challenges the model’s

ability to generate samples via a straight flow, compromis-

ing deterministic sampling across varying step counts, as

shown in Fig. 1(c). It also complicates predicting later sam-

pling steps from earlier ones, limiting the effectiveness of

reward models [30] and guided models [4]. Moreover, in

the context of distillation, which typically adopts a progres-

sive approach, XFLOW can introduce misleading signals, as

evidenced in Rectified Flow [15]. Perhaps most critically,

XFLOW can lead to the generation of Out-Of-Distribution

(OOD) samples or low-quality samples, especially as sam-

pling step size increases, as illustrated in Fig. 1(d-e).

In this paper, we propose a novel training strategy aimed

at resolving the XFLOW challenge in diffusion models. Our

method centers on augmenting the input dimensionality to

these models, a change that effectively prevents flow cross-

ing. As depicted in Fig. 1(a), the issue at hand arises when

two flows intersect, creating ambiguity; the input to the net-

work (for instance, a noisy image) remains constant, yet it

is associated with multiple potential targets (such as distinct

noises originating from different images). To address this,

our approach entails predicting the flow itself during the

training phase, as shown in Fig. 1(b). Notably, we utilize the

noise predicted by the network as the flow’s endpoint, incor-

porating this element into the model’s input. This technique

sidesteps the pitfall of using groundtruth noise as input,

which would otherwise result in trivial training solutions de-

void of substantive learning. For practical implementation,

we found ControlNet [31] particularly effective in this con-

text. Additionally, our methodology integrates a bootstrap

approach reminiscent of Analog bits [3], which significantly

enhances our model’s optimization and effectively narrows

the gap between training and inference phases.”

To evaluate our approach, we introduce the Inference

Flow Consistency (IFC) metric, reflecting XFLOW sever-

ity. We also utilize Inception Score (IS) [22] and Fréchet

Inception Distance (FID) [9] for assessing generation qual-

ity. Our models, trained from scratch and compared against

baselines on CIFAR-10 [13], demonstrate not only an avoid-

ance of XFLOW but also an enhancement in generation qual-

ity. The contributions of this paper include:

• We identify a widespread phenomenon in diffusion

models, termed XFLOW, leading to non-straight flow

during inference stage that may generate OOD or sub-

optimal samples.

• We attribute XFLOW’s origins to the instability of the

target during the training process. Accordingly, we in-

troduce the Non-Cross Diffusion, a novel training and

inference pipeline to mitigate the XFLOW problem by

enhancing input dimensionality.

• Our experiments on both a toy model and the CIFAR-

10 dataset demonstrate that our method not only

improves the proposed IFC metric by addressing

XFLOW, but also significantly enhances other image

evaluation metrics, such as IS and FID.

2. Related work
2.1. Diffusion models

Diffusion models, as generative models, learn the reverse

denoising process from Gaussian noise to image distribu-

tion, achieved through either Markov [10] or non-Markov

operations [23]. They are favored over other generative

models like GAN [8] and VAE [27] due to their training sta-

bility and superior generation quality. Subsequent enhance-

ments to these models primarily concern varied network ar-

chitectures [12], noise schedulers or losses [18], transition

from image space diffusion to latent space [20], and im-

proved sampling techniques [16], with little attention to the

XFLOW during training. Rectified Flow [15] noted the mis-

match in sampling across different inference steps, a signifi-

cant distillation issue, but did not analyze it further. Instead,

they proposed a workaround using a 2-rectified flow to fit

another model to a non-crossing flow between source and

target distributions, which depends on a well-trained diffu-

sion model and requires additional retraining. Our paper is

the first to examine XFLOW in diffusion and offer solutions.

2.2. Conditional Image Generation

Conditioning techniques are instrumental in managing

generated content [6, 20, 28, 29]. For diffusion models,

score-based model [25] proposes classifier guidance, which

is an efficient method to balance controllability and fidelity

using the gradients from a classifier, while classifier-free

guidance [11], being another important conditioning tech-

nique to diffusion models, trains both conditional and un-

conditional diffusion models, and combining their score to

achieve better controllability. ControlNet [31] employs pre-

trained encoding layers from billions of images as a back-

bone to learn diverse conditional controls, which is an ar-

chitecture adopted in this paper. Analog Bits [3] introduces

a technique that conditions the model on its own previously

generated samples during iterative sampling, akin to our

work. However, Analog Bits mainly aims to enhance sam-

ple quality by reusing the previous target, while our focus is

to introduce a condition as an extra dimension in the train-

ing flow to prevent crossing issues.
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Figure 2. The overview of non-cross diffusion. Training stage: The training phase involves two cases. In Case 1, we utilize 0 as the

condition and calculate loss function Lsimple as defined in Eq. 5. For Case 2, we first compute ε̂ using 0 as condition. Subsequently, ε̂ is

employed as the condition to calculate Lsimple. Throughout the training process, Case 1 is applied with a fixed probability p; otherwise,

Case 2 is implemented. Inference stage: During the inference phase, 0 is used as the condition in the initial denoising step. This is

followed by iterative utilization of the estimated noise from the previous step as the condition for subsequent steps.

3. Method
In this section, we start with a brief review of the for-

mulation of DDPM [10]. Next, we show the drawback of

baseline flow and analyze the cause of XFLOW. Then, we

introduce Non-Cross Diffusion to avoid crossing by ascend-

ing dimension of input, together with training, inference,

and network architecture of Non-Cross Diffusion. Finally,

we introduce IFC for evaluating the semantic consistency

of the inference flow.

3.1. Preliminary

Given samples from data distribution x0 ∼ q(x0),
DDPM [10] defines a forward noising process q, producing

latent variables x1, . . . , xT by gradually adding Gaussian

noise with a variance schedule βt ∈ (0, 1) as follows:

q(x1, . . . , xT ) :=

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI). (2)

With αt := 1 − βt and ᾱt :=
∏t

s=0 αs, the marginal

q(xt|x0) can be derived through Eq. 2 as follows:

q(xt|x0) = N (xt,
√
ᾱtx0, (1− ᾱt)I), (3)

xt =
√
ᾱtx0 +

√
1− ᾱtε, (4)

where ε ∼ N (0, I). Using Bayes theorem, we can cal-

culate the posterior q(xt−1|xt, x0) in terms of βt, αt and

ᾱt. There are many different ways to parameterize pθ
to approximate the posterior, while DDPM [10] chooses

pθ(xt−1|xt) = N (xt−1;μθ(xt, t), σ
2
t I), and propose that

predicting ε works best with a loss function:

Lsimple = Et,x0,ε[‖ε− εθ(xt, t)‖2], (5)

where μθ(xt, t) =
1√
αt
(xt − βt√

1−ᾱt
εθ(xt, t))

3.2. Understanding Drawbacks of DDPM Flow

Training stage. Given source distribution π0 (i.e., q(x0))
and target distribution π1 (i.e., N (0, I)), we sample two

data pairs (x0, xT ), (y0, yT ) ∼ π0×π1. During the training

stage, assume these two training flows cross at time step t
(i.e., xt = yt). Following Eq. 4, we have:

xt =
√
ᾱtx0 +

√
1− ᾱtεx, (6)

yt =
√
ᾱty0 +

√
1− ᾱtεy. (7)

At the crossing point, both flows aim to minimize the loss

function as follows during training:

Lsimple = Et,x0,ε[‖ε− εθ(xt, t)‖2], (8)

For given (x0, xT ), (y0, yT ) and cross point t, the loss can

be reformulated as follows:

L1 =
1

2
‖εx − εθ(xt, t)‖2 + 1

2
‖εy − εθ(yt, t)‖2, (9)
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Figure 3. Generated images and inference flows of Stable Diffusion 1.5 using DDIM scheduler with prompt ”a photo of an astronaut
riding a horse on mars” and negative prompt ”bad, deformed, ugly, bad anotomy”. (a)-(d) are generated with seed 0,1,2,3 respectively.

The results demonstrate that the inference flows across different steps could be quite different at specific time t, which implies the influence

of the XFLOW.

where εx = xT and εy = yT . To check how the crossing

point affects the optimization process, we simplify the tar-

get in the formulation of an optimization problem. Since

εθ(xt, t) = εθ(yt, t) = εθ(zt, t), we use the notion of εθ to

represent them all.

θ∗ = argmin
θ

1

2
‖εx − εθ‖2 + 1

2
‖εy − εθ‖2 (10)

= argmin
θ

1

2
(ε2x − 2εxεθ + ε2θ + ε2y − 2εyεθ + ε2θ)

(11)

= argmin
θ

1

2
(ε2x + ε2y)− (εx + εy)εθ + ε2θ (12)

= argmin
θ

1

4
(ε2x + 2εxεy + ε2y)− (εx + εy)εθ + ε2θ

(13)

= argmin
θ

‖εx + εy
2

− εθ‖2 (14)

Hence, with the existence of a crossing point, the optimiz-

ing target is equivalent to
εx+εy

2 . However, since εx ∼
N (0, I) and εy ∼ N (0, I), we have

εx+εy
2 ∼ N (0,

√
2
2 I),

which no longer follows standard normal distribution. This

implies that at the crossing point, the model is given an in-
correct target, which will lead to ambiguity in data genera-

tion (i.e., the denoising process).

Inference stage. Considering the ambiguity exists in a

trained model, XFLOW, where the generation flow may de-

viate from the correct direction, results in various failure

cases, as illustrated in Fig. 1. We further visualize the in-

ference flow of text-to-image Stable Diffusion in different

steps. We save the intermediate latent of each step and vi-

sualize the inference flow by using T-SNE. As illustrated

in Fig. 3, the visualization demonstrates that Stable Dif-

fusion also shows various inference flows across different

steps, which implies the influence of XFLOW. The results in

Fig. 3 demonstrate that the XFLOW phenomenon occurs fre-

quently within stable diffusion, which results in sub-optimal

or even OOD synthesis.

Besides, we propose that the consequences of XFLOW

also depend on the timestep of inference. Specifically, more

inference steps, correlating with smaller strides, subtly af-

fect inference flow because the deviation is also smaller and

subsequent steps can correct minor errors. On the contrary,

fewer inference steps, leading to larger strides, significantly

impact the inference flow due to the crossing point, poten-

tially generating inconsistent or OOD samples. Such phe-

nomena will decrease the determinism of diffusion models.

3.3. Non-Cross Diffusion

As analyzed in Sec. 3.2, XFLOW is caused by incorrect

training targets. To solve XFLOW, we introduce a new for-

mulation of diffusion models that can avoid crossing points

during training, namely Non-Cross Diffusion.

Given the fact that latent variables are linear combina-

tions of x0 and ε as in Eq. 4. We can think of the issue with

geometry, where training flows are line segments in 2D co-

ordinates, as shown in Fig. 1 (a), with the crossing point as

the intersection of two segments. From a basic geometrical

concept, i.e., any two distinct lines in a plane can intersect

at most once, as long as we can avoid the intersection once,

the two segments will never intersect again. Therefore, we

aim to eliminate crossing points between any two different

training flows, thereby maintaining the integrity and distinc-

tiveness for all of them.

To operationalize this concept, we propose to ascend

the dimension of model input. The primary issue with

Eq. 9 is that εθ(xt, t) = εθ(yt, t) when xt = yt. To rec-

tify this, we can introduce condition cx �= cy to ensure

εθ(xt, c
x, t) �= εθ(yt, c

y, t) and prevent the training flow

from crossing. The challenge is identifying cx �= cy given a

cross point t and training flow. To solve this, we use xi, yi
as conditions for each non-crossing step i on the training

flow, i.e., cx = xi and cy = yi. Specifically, given xt = yt,
by sampling another point on the flow (i.e., xi and yi), we

have xi �= yi, and thus [xi, xt] �= [yi, yt], ∀i ∈ [0, T ] \ {t}.

This reminds us that any other samples (xi) from the same
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flow can be used for ascending dimensions. This strategy

effectively creates a multidimensional space where the like-

lihood of training flows intersecting is significantly reduced.

Selection of Condition. xi is effective for ascending di-

mensions only if it is significantly different from xt. Given

the continuity of both linear combination and diffusion

models, we propose to ascend the dimension with either ini-

tial noise xT (i.e., ε) or the data point x0. Furthermore, we

find the distance between randomly sampled noise is stable

while the distance between data points may not. Take im-

age data as an example, for two randomly sampled noise

n1, n2 ∈ R
H×W×C , we have E[‖n1 − n2‖2] = 2CHW .

Besides, we can only get the initial noise during the infer-

ence stage. Therefore, using the initial noise xT for dimen-

sion ascending is more practical.

3.4. Inference Flow Consistency

To better evaluate the consistency of the inference flow

for image generation, we propose a metric by computing

the similarity between intermediate generated image x̂t
0 in

timestep t and the final generated image x̂0 based on peak

signal-to-noise ratio (PSNR) as follows:

IFC =
1

T

T∑
t=0

PSNR(x̂t
0, x̂0). (15)

Training Stage. The cornerstone of our training strategy

is to circumvent trivial solutions and avoid training col-

lapse. To achieve this, we replace the use of initial noise

ε with predicted noise ε̂. This substitution is critical in re-

fining our model’s predictive accuracy since it can effec-

tively avoid trivial solutions. However, in the initial train-

ing phase, the substantial error ‖ε − ε̂‖2 indicates ε̂’s poor

estimation. Hence, a bootstrap strategy is introduced to ε̂
during training, preventing misleading estimation of ε̂ and

thus enhancing learning robustness in the early stage.

As illustrated in Fig. 2, our training objective is formu-

lated as follows:

min
θ

Et,xt,ε,[‖ε− εθ(xt, ε̂t, t)‖2], (16)

where xt =
√
ᾱtx0 +

√
1− ᾱtε. During training, we apply

the bootstrap as follows: 1) with a fixed probability p, we

set ε̂t = 0 (i.e., Case 1 in Fig. 2); 2) at other cases, ε̂t is

assigned the value of εθ(xt,0, t) (i.e., Case 2 in Fig. 2). We

do not back-propagate through estimated noise ε̂t.
Inference Stage. As illustrated in Fig. 2, during the infer-

ence stage, to alleviate the computational costs, we use es-

timated noise in the previous step instead of the current step

as the condition and iteratively predict ε̂ as follows:

ε̂T = εθ(x̂T ,0, T ), (17)

ε̂t = εθ(x̂t, ε̂t+1, t), t < T. (18)

When the number of inference steps is large, the discrep-

ancy between ε̂t and ε̂t+1 is small, which ensures the per-

formance of our method.

Network Architecture. Inspired by ControlNet [31], to ef-

ficiently use ε̂t, Non-Cross Diffusion employs an additive

U-net branch, with ε̂t as input. For optimization, modifi-

cations are introduced, specifically removing all zero con-

volution layers and initializing the addictive encoder for ε̂t
with the original U-net. The output is incorporated into the

U-net decoder via addition. The whole network is trained

end-to-end from scratch.

A change in training flow direction at a specific timestep

yields notable differences in pre- and post-change images,

reducing PSNR. This can be effectively assessed for consis-

tency across inference stages using our PSNR-based metric.

4. Experiment

In this section, we discuss our experimental results

on toy examples (Sec. 4.1) and image generation tasks

(Sec. 4.2), as well as ablation studies (Sec. 4.3) and further

discussion for Non-Cross Diffusion (Sec. 4.4).

4.1. Toy Examples

In this section, we follow the setting in Rectified

Flow [15], drawing a training dataset from Gaussian mix-

ture π0 × π1. Given a sample {xi
0, x

i
1} from (X0, X1) ∼

π0×π1, for baseline model, we train a 3-layer MLP vθ(z, t)
to transfer from π0 to π1 with l2-loss as follow:

min
θ

‖vθ(xi
t, t)− (xi

1 − xi
0)‖2,

xi
t = txi

1 + (1− t)xi
0, t ∈ [0, 1).

Our method enhances this approach by incorporating an

additional dimension with the estimated target as follows:

min
θ

‖vθ([xi
t, ĉ

i
t], t)− (xi

1 − xi
0)‖2,

ĉit =

{
0 p≤0.5

vθ([x
i
t,0], t) otherwise

with p ∼ U(0, 1). The inference process is also similar to

our proposed method, i.e., we use the estimated target in the

previous step as the condition.

Results. As shown in Fig. 4, the baseline model’s inference

flow alters direction at the intersection of two flows due to

an erroneous loss function (Eq. 14), generating OOD sam-

ples. For toy examples, by adding an extra dimension using

the estimated result, our method prevents flow intersection,

maintaining consistent inference flow direction and effec-

tively inhibiting OOD sample generation.
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(b) Generated Trajectory
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Figure 4. Results of the Toy Model. (a) Comparison of Generated Distributions: This panel illustrates the distributions generated by the

baseline model and our proposed model. As the number of inference steps decreases, the baseline model tends to produce a significant

number of out-of-distribution (OOD) samples. In contrast, our model effectively mitigates the generation of OOD samples. (b) Trajectory

Analysis: This panel compares the generated trajectories of the baseline and our models. The baseline model’s inference flow often

redirects at the intersection point, leading to a target OOD distribution as the inference steps decrease. Our method, however, maintains a

consistent direction in the inference model, thereby straightening the trajectory.

DDIM-1000 DDIM-100 DDIM-50 DDIM-20 DDIM-10 DDIM-5

Method IS FID IS FID IS FID IS FID IS FID IS FID

iDDPM 9.02 4.70 8.99 5.65 8.89 6.61 8.59 9.82 8.20 15.91 7.09 31.37

iDDPM‡ 9.10 4.82 8.93 5.75 8.79 6.71 8.65 9.89 8.14 16.06 7.08 31.21

Ours 9.51 2.88 9.22 3.93 9.10 5.31 8.77 9.87 7.97 20.63 6.20 50.25

Ours† 9.34 3.40 9.15 4.21 9.05 5.08 8.84 7.75 8.50 12.85 7.45 27.83

Table 1. We compare the performance of baseline and our method. We generate 50k samples using DDIM with inference steps in {1000,

100, 50, 20, 10, 5}. ‡We expand the U-net encoder to ensure the same model size as ours. †We use an inference strategy similar to the

training stage. Specifically, we first give 0 as condition and get estimated noise ε̂t, then we take ε̂t as condition and compute denoised

image x̂t−1.

4.2. Experiments on Image Generation

Implementation Details. Our models are trained on

CIFAR-10 [13] and MNIST [14], with MNIST images re-

sized to 32× 32. The fidelity of generated samples is eval-

uated using IS [22] and FID [9] and inference flow con-

sistency with IFC. As a baseline, we train iDDPM [18]

from scratch with the same UNet. Training for CIFAR-10

follows iDDPM except using Lsimple only and with 250k

steps. For MNIST, training is similar to CIFAR-10 but with

100k steps. In this paper, we consider unconditional gener-

ations on each dataset (i.e. w/o class labels).

Comparison of Sampling Quality. Tables 1 and 2 com-

pare our model’s performance with a baseline model in gen-

erating CIFAR-10 and MNIST images. Fig. 7 visualizes

the generated CIFAR-10 images, where our model notably

outperforms the baseline, especially at {1000, 100, 50} in-

ference steps. The decreased number of inference steps and

increased strides enlarge the discrepancy in estimated noise

DDIM-1000 DDIM-100 DDIM-50

Method FID Method FID Method FID

iDDPM 8.02 iDDPM 8.26 iDDPM 9.12

Ours 7.13 Ours 7.72 Ours 9.06

Ours† 7.52 Ours† 7.91 Ours† 8.76

Table 2. We compare the performance of baseline and our method

on MNIST. We generate 50k samples using DDIM with inference

steps in {1000, 100, 50}. †We use an inference strategy similar to

the training stage.

between steps, introducing bias and performance decline

during inference. To counter this, we suggest conditioning

on the current step’s estimated noise. This augments im-

age quality generated by our method even at smaller steps

in {20, 10, 5}. Besides, our model outperforms the baseline

on MNIST at steps {1000, 100, 50}. The adapted sampling

strategy also enhances our model’s performance on MNIST

as the number of inference steps decreases.
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(a) Baseline (b) Ours

Figure 5. Here are the generated images using DDIM with inference steps in {5, 10, 25, 50, 100, 200, 500, 1000} on CIFAR-10. For

baseline method, the semantic information of image with small inference step and large inference step could be greatly different, which

implies that the inference flow changes its direction at some timesteps.

(a) Baseline (b) Ours

Figure 6. Here are the generated images using DDIM with infer-

ence steps in {5, 10, 25, 50, 100, 200, 500, 1000} on MNIST.

IFC

DDIM Step 1000 100 50 20 10 5

iDDPM 28.58 29.72 30.85 33.94 39.51 46.11

Ours 28.37 29.96 31.4 35.11 40.21 47.96

Table 3. We compare the consistency of baseline and our method

on CIFAR-10. We generate 1000 samples using DDIM with infer-

ence steps in {1000, 100, 50, 20, 10, 5}.

Comparison of Inference Consistency. Table 3 reveals our

method’s superior consistency over the baseline on CIFAR-

10 at inference steps {50, 20, 10, 5}, in terms of IFC,

achieved by preventing XFLOW. The impact of XFLOW is

minimal for larger steps ({1000, 100}), resulting in similar

IFC between our method and the baseline. Fig. 5 and Fig. 6

illustrate the visualization results of generated images under

different steps on CIFAR-10 and MNIST. The results fur-

ther demonstrate higher consistency compared with base-

lines, indicating a straighter inference flow.

4.3. Ablation Study

In this section, we verify the effectiveness of each com-

ponent through ablation studies.

Setting IS FID

Bootstrap
w/o bootstrap 5.93 79.70
exp-schedule 9.22 5.24
fix-prob (Ours) 9.38 4.84

Condition
x̂0 condition 9.64 20.21
mid. condition 7.15 59.09
ε̂ condition (Ours) 9.38 4.84

Network
Double Unet 9.65 6.26
ControlNet-based (Ours) 9.38 4.84

Inference
strategy

zero condition 9.06 6.43
ε condition 7.86 27.00
ε̂ condition (Ours) 9.38 4.84

Table 4. Ablation study. We generate 10k samples using DDIM

with 1000 inference step.

Ablation of bootstrap. Table 4 demonstrates the impact of

the bootstrap strategy. We experimented with three settings:

without bootstrap (w/o bootstrap, where ε̂t = εθ(xt,0, t) is

consistently applied), exponential schedule (exp-schedule,

where the probability p increases exponentially), and fixed

probability (fix-probability, where p = 0.5). The findings

reveal that lacking a bootstrap strategy can notably degrade

model performance.

Ablation of condition. We scrutinize the impact of vary-

ing conditions on our method. The x̂0 condition implies the

model utilizes the predicted image as the condition, while

the mid. condition uses the midpoint of training flow (i.e.
x̂0+ε̂
2 ). During inference, each technique employs its corre-

sponding condition. As in Table 4, mid. performs subop-

timally, presumably due to proximity to the training flows’

intersection, as mentioned in Sec. 3.3. Benefiting from its

stability, ε̂ as a condition leads to a significant FID improve-

ment over x̂0 condition.

Ablation of architecture. We also examine a Double U-net

variant, i.e., doubling U-net’s input channel to accommo-

date ε̂ input. As Table 4 shows, the ControlNet-based model
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(a) Baseline (b) Ours

Figure 7. Displayed are the generated images of baseline model and our model using DDIM with inference step of 1000 on CIFAR-10.

The results demonstrate our model’s superior image generation capabilities, significantly reducing the occurrence of OOD samples.

enhances FID by 1.42, likely because the two inputs serve

distinct roles, and the additive branch enables effective dif-

ferentiation between them, thereby facilitating training.

Ablation of inference strategy. We also consider sev-

eral inference strategies applied after training (we utilize a

trained ε̂-conditioned model). These inference strategies in-

clude the Zero condition (utilizing 0), the ε condition (using

initial noise ε), and the ε̂ condition (employing estimated

noise ε̂). Performance significantly deteriorates under the

ε condition due to ε-ε̂ discrepancy. Though our model cir-

cumvents training ambiguity, the Zero condition marginally

compromises performance during inference due to potential

redirection at cross points in the inference flow.

4.4. Discussion

This section offers an alternative perspective to under-

stand our Non-Cross Diffusion. The inclusion of ε̂t in the

model input is seen as a strong conditional constraint, which

we propose can reduce the variability of semantic informa-

tion, thus lessening the severity of XFLOW during inference.

Specifically, the ε̂t condition in Non-Cross Diffusion is

highly specific at the pixel level, making it an exception-

ally stringent constraint. Consequently, Non-Cross Diffu-
sion effectively mitigates the XFLOW issue. An interest-

ing question arises: how would XFLOW be influenced by

other forms of conditions with varying degrees of strength?

To investigate this, we employed the pre-trained ControlNet

model for empirical analysis and results.

Fig. 1(c) shows text conditional images from Stable Dif-

fusion [20], as well as pose conditional and depth condi-

tional images from ControlNet [31]. The text condition

images at steps {5, 10, 25, 50, 250, 500} present a sig-

nificant shift in the semantic content of the images at each

step. In contrast, pose conditional images demonstrate more

consistent semantic content across steps: the pose of super-

hero remains the same but the background and the style still

show a large variation. The depth conditional images keep

the highest consistency across different steps, despite some

variability in details such as the background and the pattern.

Therefore, we hypothesize that stronger conditions ease the

severity of XFLOW.

5. Conclusion
In this study, we have addressed the XFLOW phe-

nomenon in diffusion models, characterized by deviations

in generative flow that result in semantic inconsistencies

and suboptimal image generation. Our novel approach,

‘Non-Cross Diffusion’, innovates in the realm of generative

modeling by adopting ordinary differential equation mod-

els. Our empirical investigations, including both a toy ex-

ample and the CIFAR-10 image dataset, demonstrate the

substantial efficacy of the Non-Cross Diffusion approach.

The results show a marked reduction in semantic inconsis-

tencies at various inference stages and significant improve-

ments in the overall performance of diffusion models.

Looking Ahead. The identification of XFLOW as a criti-

cal issue during inference opens new avenues for research

and application optimization. Despite the effectiveness of

the proposed Non-Cross Diffusion approach on mitigating

XFLOW, we acknowledge the challenges associated with

retraining large-scale diffusion models such as Stable Dif-

fusion. However, we are optimistic that future research

will find ways to integrate these improvements into exist-

ing models, potentially circumventing the need for exten-

sive retraining. This paper lays the groundwork for such

advancements, aiming to enhance the reliability and quality

of diffusion model outputs.
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