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Figure 1. Progressive Rendering of 3DGS using our approach versus using an existing web-viewer by Antimatter. From left to right, we
show 0.2%, 0.5%, 1%, and 10% of the total number of splats, respectively. Our approach results in a faster visualization of a representative
version of the scene. At 0.2%, we have loaded in a basic level of the truck while it is completely missing in the alternative approach.

Abstract

Over the past year, 3D Gaussian Splatting (3DGS) has
received significant attention for its ability to represent 3D
scenes in a perceptually accurate manner. However, it can
require a substantial amount of storage since each splat’s
individual data must be stored. While compression tech-
niques offer a potential solution by reducing the memory
footprint, they still necessitate retrieving the entire scene
before any part of it can be rendered. In this work, we in-
troduce a novel approach for progressively rendering such
scenes, aiming to display visible content that closely ap-
proximates the final scene as early as possible without load-
ing the entire scene into memory. This approach bene-
fits both on-device rendering applications limited by mem-
ory constraints and streaming applications where minimal
bandwidth usage is preferred. To achieve this, we approx-
imate the contribution of each Gaussian to the final scene
and construct an order of prioritization on their inclusion
in the rendering process. Additionally, we demonstrate that
our approach can be combined with existing compression
methods to progressively render (and stream) 3DGS scenes,
optimizing bandwidth usage by focusing on the most im-
portant splats within a scene. Overall, our work estab-
lishes a foundation for making remotely hosted 3DGS con-

tent more quickly accessible to end-users in over-the-top
consumption scenarios, with our results showing significant
improvements in quality across all metrics compared to ex-
isting methods.

1. Introduction

In recent years, radiance fields have attracted significant
attention due to their ability to accurately portray real-life
scenes while requiring only a limited number of input im-
ages. Neural Radiance Fields [22] (NeRFs) played an im-
portant role in this resurgence as they allowed scenes to
be represented implicitly by using a multilayer perceptron
(MLP) to predict the volume density and view-dependent
emitted radiance based on an input position and look-at di-
rection. After the introduction of NeRF, follow-up work
has focused on improving different aspects of the approach
ranging from training time [23] and editing [21] to other
downstream tasks such as meshing [27]. Most of these ap-
proaches follow the same principles as NeRF and thus fall
under the category of implicit approaches. Generally, they
require less storage than explicit approaches at the expense
of making downstream tasks less intuitive and often more
difficult than explicit approaches, as there is a lack of direct
manipulability.
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Figure 2. Our approach works by rendering all training views and returning the top 20 contributing splats per pixel per image. This
information is used to create an ordering which can then be used to dynamically select how many splats are used. For progressive
rendering/streaming, we can change the number of splats per sent chunk to start rendering as soon as possible without the user needing to
wait. With little overhead in total time, we drastically reduce both time and bandwidth until time to First Paint.

3D Gaussian Splatting (3DGS) [16] takes a different ap-
proach by shifting from an implicit to an explicit representa-
tion using 3D Gaussians. By optimizing a set of 3D Gaus-
sians to represent a scene, 3DGS allows both fast training
and inference, which has been pivotal in allowing a more
widespread adoption of these techniques. Another impor-
tant factor is that the format used to store these scenes is
an extension of a regularly used point cloud format. This
factor plays an important role in facilitating downstream
tasks as it simplifies the process of experimenting with ex-
isting techniques as inspiration to bring them to the context
of 3DGS. Our work will cover two downstream examples,
progressive rendering and progressive streaming. Histori-
cally, progressive rendering has played an important role in
content visualization, as visualizing the required content to
the user as soon as possible is crucial in achieving a proper
user experience. Progressive streaming focuses predomi-
nantly on the network distribution of media content, such as
audio and video, where it is crucial that the user is able to
consume the content as soon as possible. Despite this seem-
ingly perfect fit, transferring existing progressive rendering
methods to 3DGS is not trivial, as these do not fully uti-
lize the information provided by 3DGS. Besides position,
we additionally have access to the opacity, covariance, and
view-dependent color information, which can all be used to
achieve better results.

In our work, we thus bring progressive rendering (and,
by extension, streaming) to the context of 3D Gaussian
Splatting by utilizing a contribution-based prioritization
method to determine a rendering order in post-training.
We then integrate this with other contextual information,
such as the current viewport, to ensure that relevant con-
tent is visualized to the user promptly. Concretely, us-
ing our approach allows us to reduce rendering delay and
achieve faster time-to-first-paint times, which is expected
to improve user experience. An overview of our approach
is given in Figure 2. By combining different commonly
used graphics techniques together with our contribution-
based ordering, we facilitate the visualization of the approx-

imated scene using only a fraction of the data required to
store the complete scene. We then incrementally use the
remaining data to continuously improve quality over time
(Fig. 1). Our work is the first to bring progressive ren-
dering of 3DGS into an academic context. We show that
our proposed method outperforms available web-based ap-
proaches regarding quality per percentage splats used and
show possibilities for further reductions in bandwidth uti-
lization, using existing compression methods to bring pro-
gressive rendering to 3DGS scenes. Combining both com-
pression and progressive rendering allows us to send an ini-
tial representative scene using only fraction storage required
to store the complete uncompressed scene. Furthermore,
our approach works for both complete scenes and on indi-
vidual objects within a scene, paving the way for further
application-specific research and applications.

In Sec. 2, we will discuss a selection of relevant works
concerning progressive streaming, rendering, and compres-
sion of 3DGS scenes and sketch where our approach is
situated within the domain. Sec. 3 will discuss the dif-
ferent aspects of our approach and how they contribute to
the final result. Sec. 4 illustrates our results and performs
a comparative study with existing web viewer-based ap-
proaches currently used within the community, an ablation
study, the results for per-object ordering, and compression.
Lastly, Sec. 5 outlines potential future trajectories and sum-
marizes our key conclusions.

Concretely, our contributions can be summarized as fol-
lows:

* We propose an importance-based sampling method to
decide the order of transmission that works on both the
full scene and individual objects within a scene and is
viewpoint-independent.

* We show an integration of progressive rendering into
an existing compression method and show the poten-
tial for further bandwidth savings by using a combina-
tion of both.
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* We show that our approach can be extended with frus-
tum culling and an octree-based prioritization method
to boost our performance further.

2. Related Work

This section will briefly cover the related works of our
approach. We will first discuss progressive rendering and
streaming as they form the core contribution of our ap-
proach. We will then highlight several compression papers
as both fields focus on quickly bringing content to the user.
While compression achieves this by lowering the memory
footprint, progressive approaches focus on sending the rel-
evant content first.

Progressive Rendering of 3D content Progressive
rendering of scenes has been an interest of research for
decades as it plays a crucial role in facilitating the efficient
rendering of 3D scenes. The content used has increased in
both size and amount of detail over the years, necessitating
more efficient usage of bandwidth and memory. Progres-
sive rendering allows applications to start rendering a scene
without the need for it to be fully loaded into memory or
retrieved from a remote server first. Hoppe [ 1] first intro-
duced the term progressive in 1996, specifically in the con-
text of triangle meshes. He proposed to iteratively simplify
a mesh using the edge collapse operation, which unifies two
adjacent vertices into a single vertex. The simplest version
is sent first, after which the inverse operation, vertex split,
can be applied to fully reconstruct the original mesh. These
inverse operations can be applied incrementally, allowing
the application to progressively load the mesh. At a later
stage, Hoppe [10] revisited his earlier work and integrated
view-dependent aspects into it. This updated approach used
the viewing frustum, surface orientation, and screen-space
projected error to take more context into account while re-
constructing the mesh. More recently, Chen et al. [3] have
explored the use of neural networks to learn a progressively
compressed representation for meshes. Their approach con-
verts a given mesh into a datastream that can be progres-
sively transmitted. The client can then decode this datas-
tream to reconstruct a simplified mesh, which can be itera-
tively improved upon using subsequent transmissions. This
process can continue until the original mesh is reconstructed
or the required quality is reached.

Over the years, progressive rendering has been used for
other representations besides meshes. Schiitz et al. [29] fo-
cus on progressively rendering point clouds. They achieve
this by projecting the previous set of points onto the view-
ing frustum and only transmitting points that appear in un-
occluded areas of the new frame. In the context of radiance
fields, BungeeNeRF [35] allows progressive rendering of
NeRFs for multi-scale scene rendering. The network pro-
gressively scales with the scale of the learned scene, aiming
to divide quality into different layers. Reconstruction qual-

ity can then be decided by querying a different head that
corresponds to a certain quality.

Progressive Streaming of 3D content The distinc-
tive difference between progressive rendering and progres-
sive streaming is that the latter also involves the network
delivery of the media content from a remote server to the
consuming client device. As such, with progressive stream-
ing, the client progressively renders the content at the rate
it receives from the content server. This concept is widely
adopted in the over-the-top delivery of conventional audio-
visual content via the HTTP Adaptive Streaming (HAS)
paradigm and its standardized MPEG-DASH implemen-
tation [13, 31]. Recently, the use of progressive stream-
ing is also being explored for more immersive media for-
mats. Noteworthy examples are the HAS-like progressive
streaming of textured geometry (e.g., [6,7, 18, 19,30, 36]),
light fields (both static [20, 34] and dynamic [12, 15])
and point clouds (e.g., via the MPEG V-PCC specifica-
tion [14, 33]). With respect to the progressive streaming
of radiance fields, the attention of the academic community
has focused mostly on the streaming of NeRFs representing
scenes that are static (e.g., Cho et al. [4]). Of specific inter-
est is the NeRFHub approach by Chen et al. [2], which aims
to minimize the network transfer latency of NeRF models
while satisfying lower limits regarding rendering smooth-
ness and perceptual quality. NeRFHub does so by (amongst
others) shrinking the number of hidden MLP layer chan-
nels (in combination with selective model training) and by
quantizing the feature grid’s floating point values. While
NeRFHub shares our objectives of reducing start-up latency
during over-the-top radiance field consumption, no progres-
sive streaming nor rendering is applied, as NeRFHub al-
ways deals with (quality-variant) integral NeRF models. Fi-
nally, to date, progressive 3DGS streaming remains largely
unexplored in academic literature; in effect, this paper rep-
resents a fundamental step in that direction.

Compression of 3D Gaussian Splatting Compres-
sion and progressive streaming share a similar goal of re-
ducing the bandwidth needed to render a scene. While pro-
gressive streaming focuses on sending relevant content first,
the goal of compression is to minimize the total memory
footprint. As this goal is very similar, and both approaches
can be used in conjunction with each other, we will briefly
overview the relevant works in this field.

We argue that there are two main ways of perform-
ing compression of 3DGS. The first way focuses on com-
pressing a scene while maintaining all existing parameters.
Codebooks and vector quantization are often used in these
approaches as they allow existing data to be stored with less
memory, albeit with some loss in accuracy. The second way
focuses on adapting the actual parameters themselves to a
more efficient format. Niedermayr et al. [25] performed
compression by utilizing a codebook to store Gaussian pa-
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rameters. After converting an existing scene into its code-
book representation, they fine-tune all parameters using the
training images to regain lost quality due to discretization.
Further compression is achieved by ordering the Gaussians
and using run-length encoding to create the final represen-
tation. Compact3D [24] works under the assumption that
large groups of Gaussians will be likely to share parameters.
They then use K-means clustering to group similar Gaus-
sians and use a codebook to store data per cluster. They
also promote fewer Gaussians in a scene by adjusting the
opacity values to be close to one or zero. EAGLES [&] uses
a technique similar to our own as they also use contribu-
tion as a metric to filter splats. Besides this, they use vector
quantization to reduce storage further. The previously men-
tioned approaches all fall under the first category and focus
on compressing the existing parameters into a smaller for-
mat. Papantokankis et al. [26] propose different methods
in their work, such as resolution-aware pruning and adap-
tively adjusting the number of coefficients used to model
directional radiance. LightGaussian [5] also focuses on the
directional radiance and distills spherical harmonics to a
lower degree, thereby compressing the largest contributor
to memory usage. Our approach can be used together with
any compression technique that allows for some factoriza-
tion based on the contribution of a Gaussian to a given pixel.

3. Methododology

Our approach allows progressive rendering of 3DGS by
determining an ordering among Gaussians. By prioritizing
Gaussians that have contributed significantly to the scene,
we reduce the number of bytes needed for a qualitative ap-
proximate reconstruction. By rendering each training view-
point and calculating the contribution across all views, we
create an initial ordering of the Gaussians. We further re-
fine this by inserting all Gaussians into an octree and select-
ing the top contributing Gaussians per leaf node (mean in-
side leaf node). This results in the splats being more evenly
spread across the scene, with a small hit to the quality of the
foreground. Additionally, we can enable frustum culling to
further increase the perceptual quality of the visible scene.
Besides creating an order at the scene level, our approach
also functions at an object level. This allows us to priori-
tize splats within individual objects or to prioritize objects
within the scene. Our final contribution is the integration
of our technique into an existing compression method to
fully demonstrate the capabilities of this combination when
it comes to reducing storage and bandwidth requirements.
In the following subsections, we will discuss each aspect of
our approach in more detail.

3.1. Contribution-based ordering

The fundamental idea behind our approach comes from
using the contribution of a Gaussian to all rendered views

as a metric of its importance to the scene. Large Gaussians
with a high opacity value will most likely contribute more
than smaller splats with a low opacity. Using this intuition,
we render all training views and calculate the contribution
of a Gaussian across them to use as a contribution score.
Sorting based on this contribution score leads to an ordering
among Gaussians that estimates how important each Gaus-
sian is for reconstructing the final scene. To retrieve the
actual contribution value, we render the image and store the
weighting factor of the top K contributing Gaussians per
pixel. The color C of a pixel is determined as:

N
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i-1

T =[] - o)
j=1
where T; represents the transmittance, «; the opacity value,
c; the color value, and N loops over the Gaussians over-
lapping the current pixel. The contribution is then taken as
T «;. For each pixel, we return a pairing of contribution and
Gaussian ID to measure the final contribution of a specific

Gaussian as:
Bia =YY (Tuaia)

veV peP

where V represents the set of viewpoints and P represents
all pixels per viewpoint. This contribution directly trans-
lates into an ordering that reflects the importance of a Gaus-
sian to the scene. It can be used to create chunks of Gaus-
sians that can be rendered or sent independently of each
other. EAGLES [£] uses the same metric during training
to prune splats that are less impactful during training. In-
stead, our approach opts to use it in post-training as a way
to select impactful splats that are advantageous to send first.

3.2. Refinement of ordering using octree

Using the global ordering created by the initial step, the
chosen splats tend to focus on areas densely captured in the
input data (see Sec. 4). As we sum up all pixels, Gaussians
that have been seen more often will be more likely to have
a higher contribution score. This can result in sparsely cap-
tured parts being unfairly under-reconstructed. To counter
this effect, we utilize an octree to create a spatial subdivi-
sion in the scene based on the density of splats. By taking
the highest contributing splats per leaf node(using ), we ef-
fectively spread out the Gaussians over the scene and thus
make sure every part is partly reconstructed. Changing the
maximum depth of the octree changes how much denser
areas are prioritized. Density, in most cases, corresponds
to areas of higher detail. This, however, does not always
correspond perfectly to the distinction between background
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Figure 3. We show the results of different scenes for all three metrics and that our two approaches consistently outperform the
previous methods by a significant margin. These scenes are taken from the MipNeRF360 [1] indoor and outdoor datasets and the
Tanks&Temples [17] dataset. PSNR is measured compared to the original reconstruction and is capped at 100 when the complete scene is

loaded in. (PSNRT, SSIMT, LPIPS])

and foreground; thus, caution is needed when setting this
depth to not over or underprioritize these parts of a scene.
In Sec. 4, we show the impact of this parameter in more
detail.

3.3. In-frustum prioritization

As the initial pose of the user is known beforehand, we
can use it to fine-tune our initial ordering further. Using our
initial list of Gaussians, we can select a percentage of splats
chosen from within this frustum to allow rapid movement
while focusing mainly on what is visible to the user. To de-
termine if a splat lies within the viewing frustum, we project
all splats onto the image plane and filter the splats that fall
outside it. As Gaussians cover areas and not points on the
image plane, there is a chance that a Gaussian of which the
mean falls outside the frustum still contributes to the image.

We thus follow 3DGS and allow a small margin around the
frustum in which we still count Gaussians as being inside.

3.4. Object-level rendering

By segmenting splats that belong to a specific object,
we can create an ordering within an object or compare ob-
jects at a scene level based on the sum of their contribu-
tions. Within an object, we apply the same principles as at
the scene level and prioritize splats that have a significant
contribution to the object. Within a given scene, we can
prioritize objects based on their contribution to the scene
and send higher-quality representations of important objects
while sending lower-quality, low-contributing objects. In
the context of progressive rendering, both these cases are
important to have as they allow more advanced progres-
sive rendering/streaming techniques to be implemented. For
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now, we achieve this by manually segmenting objects or us-
ing existing 2D segmentation methods [28] and finding the
contribution of splats within this segmentation to determine
the importance of objects for a given scene. This can, how-
ever, also be used for scenes that are composed of different
trained models.

3.5. Integration into compression methods

As our approach is agnostic to any Gaussian-specific pa-
rameter and can use solely contribution to calculate an or-
dering, our approach can be applied to other 3DGS-inspired
approaches. We have to point out that our approach only
has benefits when per-Gaussian data is stored, which despite
the frequent use of codebooks, is the case for the majority
of compression papers. To show this claim holds up, we
integrate our approach into the approach of Niedermayr et
al. [25] and demonstrate that our approach achieves similar
orders of progressive rendering gains. We simply adapted
the renderer to include passing back the contribution values
and IDs per Gaussian and calculating our ordering after-
ward. Caution has to be taken as this approach sorts the
Gaussians in Morton order before saving them, which com-
pletely voids our previous ordering. Furthermore, when
vector quantization is done using the minimum and max-
imum values, they have to be passed as well to allow for
dequantization.

4. Experiments

Dataset. We used the MiPNeRF360 [ 1] dataset (inside &
outside), two scenes from the Tanks&Temples [ 7] dataset,
and two scenes from the Deep Blending [©] dataset to vali-
date our approach. We used the original code of 3DGS [16]
to split the data into train and test sets to promote consis-
tency.

Evaluation metrics. We use community-standard image
loss metrics Peak-signal-to-noise ratio (PSNR), Learned
Perceptual Image Patch Similarity (LPIPS), and Structural
Similarity Index Measure (SSIM) to measure the visual
quality. We compare each approach to the final trained ap-

proach and not the ground truth to show how well it approx-
imates sending the complete trained scene.

Implementation details. For our experiments, we used
the contribution of the 20 highest contributing Gaussians
per pixel to decide on the ordering, which is an overes-
timation in most cases. In experiments using an octree
(Sec. 3.2), we use a depth of 3 unless otherwise stated. For
frustum culling, we allow some margin by increasing the
frustum boundaries by 30%. For experiments with specific
objects within a scene, we manually segmented them from
the trained scene. We used the approach by Niedermayr
et al. [25] for all experiments concerning compression and
adapted their approach to allow for chunking of the com-
pressed files into different independent files based on con-
tribution to the training views. Concretely, we insert the
minimum and maximum splats to allow for dequantization
when loading the .ply files.

4.1. Quantitative Evaluation

As our work is the first to bring progressive rendering
of 3DGS into the academic context, we compare ourselves
with widely used online web viewers. We also show sev-
eral variants of our own work and verify that our approach
consistently outperforms other approaches. Concretely, we
compare our implementation to 3D Gaussian Splatting with
Three.js' and 3D Gaussian Splatting viewer by antimat-
terl5”. Most other available viewers are closed-source or
require the complete .ply file to be downloaded before ren-
dering starts, which can take from multiple seconds up to
several minutes. This further demonstrates the need for
open-source progressive rendering approaches. Antimat-
ter’s viewer prioritizes splats based on a combination of
their opacity and scale:

__scale.z+scale.y+scale.z

€
1+e—opac1,ty

Gcontr =

while the three.js implementation opts to load in splats start-
ing from the center. We can simply use the Euclidean dis-

Thttps://github.com/mkkellogg/GaussianSplats3D
Zhttps://github.com/antimatter15/splat

(a) Ground Truth

(b) Ours

(c) Antimatter (d) Three.js

Figure 4. A concrete comparison between the three aforementioned methods on the bonsai scene taken from Mip-NeRF360 indoor scenes
being rendered at 10% splats compared to the ground truth. Notice how both the bonsai and cloth are being rendered at a higher quality
in Ours(b) than in Antimatter(c). Tree.js(d) will almost always be outperformed using standard metrics as the background is completely

missing.
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(b) Base+Octree

(c) Difference Base & GT

(d) Difference Base+Octree & GT
Figure 5. Despite the right image (b) performing better than the

left image (a), we can clearly see there are more errors in the fore-
ground when comparing (c) with (d).

tance from the center as a metric of contribution:

Geontr = \/(332 —21)?+ (y2 —y1)? + (22 — 21)?

where the center is taken as (0,0,0). Our approach is cal-
culated as in Sec. 3.1. In Fig. 3, we show that our ap-
proach outperforms previous methods by a significant mar-
gin across different datasets and metrics. The images in
Fig. 4 also demonstrate a clear perceptual improvement of
our approach. The bonsai and tablecloth are loaded in at a
higher quality while using the same amount of splats. Large
splats that contribute to multiple pixels will inherently get
a higher score and, thus, are more likely to be sent first.
As each pixel’s contribution is capped at 1, smaller splats
are inherently disadvantaged and will need a large contribu-
tion to receive a higher overall score. We argue that these
attributes are wanted behavior which is proven by Fig. 4
clearly showing a large jump in quality over the previous
methods.

4.2. Ablation Study

The base implementation (see Sec. 4.1), which solely
used the contribution across pixels and views as a metric,
achieves state-of-the-art results. We will now show the im-
pact of the aforementioned additions to this base implemen-
tation and their impact on the final rendering quality. Our
first addition is the octree, which forces Gaussians to spread
out more over the scene. This results in the sparsely cap-
tured parts of the scene being loaded in sooner, as can be
seen in Fig. 5. On average, including the octree approach re-
sults in a loss in PSNR as the foreground often contributes
more to PSNR. Perceptually, however, we observe a clear
difference between both images. Considering the difference
images in Fig. 5, the background shows fewer errors while
the foreground becomes slightly worse. This deterioration
of the foreground results in lower PSNR scores on average.

(a) Depth 1
PSNR:21.58 L E
AE

(c) Depth 5 (d) Depth 7

Figure 6. We show the impact of the octree depth parameter on the
rendering quality. Using a depth that is either too low or too high
will result in not enough attention being given to the background.
Using 3 as the depth parameter consistently yields good results
across all scenes.

For now, we leave this as a subjective observation, and fu-
ture user studies will be needed to verify our intuition that
using the octree does, in fact, lead to a better user experi-
ence. Fig. 6 then shows the impact of the depth parameters,
clearly illustrating the negative impact of selecting a depth
that is too high. Lower depth values have little to no impact,
as can be seen by keys on the keyboard not being present.
Medium depth values, such as 3 and 5, perform well in both
the foreground and the background. A value of 7 starts in-
troducing errors, as can be seen by the black blur on the
bottom right. As this value gets larger, it comes closer to
the base approach. The next addition is frustum culling,
where we focus on loading in splats that are visible to the
user. Fig. 7c shows that the foreground becomes marginally
better. As more than 10% of all splats are visible within the
current frustum, the small background splats are still not se-
lected. This partly occurs as frustum culling occurs after the
global ordering has been determined. We thus do not take
into account occlusions from the current viewpoint. Using
our approach with the octree results in a good representation
of the scene without requiring any user-specific knowledge,
while the complete approach, with frustum culling, will per-
form better when we have access to such information.

4.3. Object level

We manually segmented several objects and verified our
approach on each object. Fig. 8 shows that our approach
enables progressive object rendering, loading each object
solely based on its contribution. We tested this on several
objects segmented from the aforementioned datasets and
consistently achieved better scores per percentage loaded
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(d) Base+Octree+Frustum culling

(c) Base+Frustum culling

Figure 7. This figure shows the progression from our base ap-
proach to the complete approach going from top left to bottom
right. Notice how the background is noticeably better when using
the octree to spread out Gaussians. The impact of frustum culling
becomes more noticeable when we use the octree as we enhance
(b) further by forcing even more splats to lie inside the frustum.

splats compared to other methods.

4.4. Integration with compression

Our final contribution is the integration of our approach
into an existing compression method to show the impact
it can have on the quality at the time to First Paint. We
adapted the technique of Niedermayr et al. [25] to include
our contribution-based ordering technique. To integrate our
approach, the save-functionality has to be slightly rewritten
to consider alterations from the base approach. Concretely,
to perform vector quantization, the minimum and maximum
values are needed for all values within said chunk. If every
chunk needs to be rendered independently from the other
chunks, the minimum and maximum need to be included in
every chunk. Furthermore, the Gaussians are sorted in Mor-
ton order in the original approach to allow for further com-
pression. This step happens right before saving the scene,
requiring us to apply this sorting on the selected indices as
well. We disabled this for now as this has no impact on the
selected splats and only on the final storage requirements.
Fig. 9 shows that we achieve similar results comparing qual-
ity per percentage of splats compared to our base approach
on the standard 3DGS implementation. In actually required
memory, there is a smaller difference as the shared code-
book reduces the amount of Gaussian-specific data.

5. Conclusion and Future Work

We proposed a novel approach that facilitates progres-
sive rendering of 3DGS and 3DGS-inspired methods by uti-
lizing the contribution of Gaussians to determine an order of
importance among them. Our approach allows us to provide

(a) Ours

(b) Antimatter

Figure 8. Comparison of our approach vs Antimatter on a segmen-
tation of the bonsai tree from the bonsai scene. The zoomed-in
crop shows that our approach is able to load in a more detailed
version, which is also reflected by the masked PSNR.

a significantly better visualization with the same amount of
splats. We have also shown that our approach can work
in tandem with existing compression techniques to reduce
the required bandwidth further. Our approach serves as the
groundwork for the progressive streaming of 3DGS, which
will play a vital role in bringing 3DGS content to end-users.
In the future, we can explore other perspectives to optimize
the streaming order by utilizing reinforcement learning, as
shown in [32]. Other potential research directions include
measuring user experience and application-guided progres-
sive rendering, i.e., using object-level ordering to achieve
adaptive streaming. When the domain evolves to work with
larger and larger areas, progressive rendering and streaming
will become more and more important.
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Figure 9. Comparison of the compressed versions of our approach
(left) and Antimatter (right), both containing only 10% of the
splats after compression.
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