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A. Visualizations

In Fig. 2, we map the TEMI clusters to classes using
the Hungarian mapping [9] on CIFAR100. For the map-
ping to be one-to-one, we set C = 100. We then generate
samples using the same initial noise with both C-EDM and
GT-conditioned EDM and visualize the first 20 clusters on
CIFAR100. Given the same initial noise and the cluster that
is mapped to its respective GT class, we observe a lot of vi-
sual similarities in the images, even though the two models
(C-EDM and EDM) have different weights and have been
trained with different types of conditioning.

In Figs. 3 and 4, we visualize C-EDM samples generated
from the same initial noise on FFHQ-64 for diffusion mod-
els trained with varying cluster granularities. Each noise
gets a condition sampled from p(c). Similar to our quan-
titative analysis, the generated images from small cluster
sizes are closer to the unconditional prediction. Finally, in
Fig. 1, we visualize cluster-conditioned and unconditional
FFHQ samples at Mimg = 100M .

In Fig. 5, we visualize real training FFHQ images that
are grouped in the same TEMI cluster using the DINO fea-
tures. We visually identify groups with shared character-
istics such as sunglasses, hats, beanies, pictures of infants,
and pictures of speakers talking to a microphone. Finally, in
Fig. 6 we provide a more detailed visual comparison of low
and high confidence samples using C-EDM on CIFAR100.

B. Additional discussion points

B.1. FID and FDD across training iterations

In Fig. 7, we report FID and FDD across training us-
ing C-EDM with TEMI clusters. We notice that FID

tends to saturate faster than FDD and fluctuates more be-
tween checkpoints. FDD keeps decreasing monotonically,
with minimal fluctuation and always prefers the samples at
Mimg = 200. Since both metrics compute the Frechet dis-
tance, these tendencies can only be attributed to the super-
vised InceptionV3 features. Even though the study of gen-
erative metrics is out of the scope of this work and a human
evaluation is necessary as in [13], we hope that our findings
w.r.t. cluster-conditioning can facilitate future works.

B.2. Image synthesis beyond ImageNet.

ImageNet is currently the largest labeled public dataset,
and a single experiment using a recent state-of-the-art dif-
fusion model on ImageNet requires up to 4MWh at 5122

resolution [8]. Based on our experiments, clusters match
or outperform the human-derived labels on image genera-
tion by estimating the visual groups. Using the introduced
upper bound, the search space of the visual groups is signifi-
cantly reduced with minimal computational overhead, while
no further hyperparameter tuning is required. Therefore,
it allows future works to incorporate unlabelled data and
experiment at scales beyond ImageNet while being sample
efficient. Additionally, the sample efficiency compared to
noisy or non-mutually exclusive labels could be investigated
in future works.

C. Deep image clustering with TEMI
C.1. Intuition for γ

In the TEMI loss function, there are two parts inside
the log sum: the numerator

(
qis(c|x)qit(c|x′)

)γ
aligns the

cluster assignment of a positive pair and is maximal when
each individual assignment is one-hot. On the other hand,
the denominator q̃it(c) promotes a uniform cluster distribu-
tion. By dividing element-wise with the cluster probability,
it is effectively up-weighing the summand corresponding to
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Figure 1. Visual comparison between C-EDM (C=400) and unconditional EDM (Uncond.) at Mimg = 100M on FFHQ at 128x128.

classes with low probability. In other words, when q̃it(c)
is low. The hyperparameter γ reduces the influence of the
numerator, which leads to partial collapse [5] when γ = 1.

C.2. What about the lower bound? TEMI with
γ = 1 experiments.

Starting with a high overestimation of the number of
clusters (e.g. 1K for CIFAR10), we find that TEMI clus-
tering with γ = 1 utilizes a subset of clusters, which could
be used as a lower cluster bound. More precisely, we find a
maximum standard deviation of 6.4 for Cu across datasets
and feature extractors (see Supp.). Intuitively, Cu is the
minimum amount of clusters TEMI (with γ = 1) uses to
group all image pairs. This behavior is analogous to cluster-
based self-supervised learning (using image augmentations)
[2,15] and has been recently coined as partial prototype col-
lapse [5]. Nonetheless, the lower bound is more applicable
to large scales as the measured standard deviation might
exclude the optimal granularity for small, highly curated

datasets. Due to the above limitation, we leave this for fu-
ture work.

As depicted in Tab. 1, the utilized number of clusters Cu

is not sensitive to the pre-determined number of clusters nor
the choice of backbone for TEMI clustering when γ = 1.

C.3. TEMI with different backbones.

Here, we report ANMI across various cluster sizes based
on the result reported in the main paper (Fig. 5, main pa-
per). For all the conducted experiments, we used TEMI
with γ = 0.6. Apart from having roughly the same FID,
we can observe the ranking of backbones w.r.t ANMI is not
consistent across cluster sizes.

C.4. Dependence on q(c) during generative sam-
pling on balanced classification datasets.

It is well-established in the clustering literature that k-
means clusters are highly imbalanced [14]. To illustrate this
in a generative context, we sample from a uniform clus-



Figure 2. Visualizing generated images from CIFAR100 using C-EDM (even rows) and ground truth conditional EDM (odd rows) using
the same initial noise and deterministic noise sampling. We map the C=100 CIFAR100 cluster to the respective ground truth class as
computed via the Hungarian one-to-one mapping.

Table 1. Number of utilised clusters Cu for different number of input clusters C (left) and different backbones (right) using TEMI with
β = 1 with the DINO ViT-B/16 backbone. We show the relatively small sensitivity of Cu to the choice of C and backbone; we report a
standard deviation of a maximum value of 6.37 across different cluster sizes and 6.44 across backbones on CIFAR10.

TEMI CIFAR10 FFHQ CIFAR100
γ = 1 Cu Cu Cu

100 33 36 48
400 38 48 48
500 34 54 51
800 40 45 47
1K 34 49 47
2K 48 52 54
5K 28 42 51
Mean 36.4 46.6 49.4
Std 6.37 6.16 2.63

TEMI CIFAR10
γ = 1, C = 500 Cu

DINO ViT-B/16 [2] 34
MoCOv3 ViT-B/16 [3] 39
iBOT ViT-L/14 [15] 45
OpenCLIP ViT-G/14 [4] 47
DINOv2 ViT-g/14 [11] 50
Mean 43
Std 6.44



Figure 3. Visualizing generated images from FFHQ-64 using CEDM for different number of clusters C with the same random noise. We
use deterministic noise sampling. Each noise gets a condition sampled from p(c) for each individual clusters.

Uncond. C=10 C=100 C=200 C=400 C=600 C=1K

Figure 4. Generated FFHQ-64 samples using C-EDM and TEMI clusters with different granularity levels C as well as unconditional EDM
(Uncond., first column). All samples in a row use the same initial noise. The cluster assignment is randomly sampled from q(c) for each
C.

ter distribution instead of q(c) for balanced classification
datasets (CIFAR10 and CIFAR100). As expected, k-means
is more dependent to q(c) compared to TEMI, as its FID is
significantly deteriorated.

D. The EDM diffusion baseline.

This section briefly summarizes the EDM framework for
diffusion models, which was used extensively in this work.
For more details and the official EDM code, we refer the

reader to the original paper by Karras et al. [7].
Given a data distribution pdata(x), consider the condi-

tional distribution p(x;σ) of data samples noised with i.i.d.
Gaussian noise of variance σ2. Diffusion-based generative
models learn to follow trajectories that connect noisy sam-
ples x ∼ p(x;σ) with data points y ∼ pdata(x). Song
et al. [12] introduced the idea of formulating the forward
trajectories (from data to noise) using stochastic differen-
tial equations (SDE) that evolve samples x(σ) according to
p(x;σ) with σ = σ(t) as a function of time t. They also



Figure 5. Visualizing training images from FFHQ that belong to the same TEMI cluster. Images that are grouped into the same cluster are
shown in the same row. We use the trained TEMI model with CV = 400 using the DINO backbone. Cluster assignments are picked to
illustrate that images with similar visual characteristics are grouped together (i.e., beanies, smiling faces, glasses, hats, kids, etc.). Images
are randomly sampled from each cluster.



(a) High-confident C-EDM samples

(b) Low-confident C-EDM samples

Figure 6. Generated low- (a) and high-confident (b) CIFAR100 samples . The top row depicts the unconditional (Uncond.) samples,
while the bottom row shows the generated samples using C-EDM with TEMI (C = 200). Images on the same column are produced with
the same initial noise. Confidence is quantified using maximum softmax probability (MSP). MSP is measured using TEMI trained on
CIFAR100 without annotated data.
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Figure 7. FID score (y-axis, left) and FDD (y-axis, right) during training samples seen (Mimg , x-axis). We used CV = 100, 200, 400 for
CIFAR10, CIFAR100 and FFHQ-64 respectively.

proposed a corresponding “probability flow” ordinary dif-
ferential equation (ODE), which is fully deterministic and
maps the data distribution pdata(x) to the same noise distri-
bution p(x;σ(t)) as the SDE, for a given time t. The ODE
continuously adds or removes noise as the sample evolves
through time. To formulate the ODE in its simplest form,
we need to set a noise schedule σ(t) and obtain the score
function ∇x log p(x;σ):

dx = −σ̇(t)σ(t)∇x log p(x;σ)dt. (1)

While mathematical motivations exist for the choice of
schedule σ(t), empirically motivated choices were shown to
be superior [7]. The main component here, the score func-

tion, is learned by a neural network through what is known
as denoising score matching. The core observation here is
that the score does not depend on the intractable normaliza-
tion constant of p(x, σ(t)), which is the reason that diffu-
sion models in their current formulation work at all (maybe
remove this side-note). Given a denoiser D(x, σ) and the
L2-denoising error

Ey∼pdataEn∼N (0,σ2I)[∥D(y + n, σ)− y∥2], (2)

we can recover the score function via ∇x log p(x, σ) =
(D(x, σ) − x)/σ2. Thus, parametrizing the denoiser as
a neural network and training it on Eq. (2) allows us to
learn the score function needed for Eq. (1). To solve the



Table 2. CIFAR10 ANMI across different cluster sizes and state-
of-the-art feature extractors used for TEMI clustering with γ =
0.6. We only reported the ANMI for C = 100 in the main
manuscript.

TEMI (γ = 0.6) ANMI ANMI ANMI
C 50 100 200

MoCov3 ViT-B/16 [3] 65.2 59.3 55.0
DINO ViT-B/16 [2] 65.7 60.7 55.8
DINOv2 ViT-g/14 [11] 66.1 63.8 59.3
iBOT ViT-L/14 [15] 68.7 62.7 57.4
CLIP ViT-G/14 [4] 70.6 64.7 58.9

ODE in Eq. (1), we can put the recovered score function
into Eq. (1) and apply numerical ODE solvers, like Euler’s
method or Heun’s method [1]. The ODE is discretized into
a finite number of sampling times t0, ..., tN and then solved
through iteratively computing the score and taking a step
with an ODE solver.



Table 3. We report FID for k-means and TEMI with and without considering the training data’s cluster distribution q(c). U({1, .., C})
denotes the uniform cluster distribution. We use CV = 100, 200, 400 for CIFAR10, CIFAR100 and FFHQ, respectively. ∆ quantifies the
absolute difference.

EDM [7] Sampling Distribution CIFAR10 CIFAR100
k-means U({1, .., C}) 2.75 2.60
k-means q(c) 1.69 2.21
∆ (↓) - 0.79 0.39
TEMI U({1, .., C}) 1.86 2.41
TEMI q(c) 1.67 2.17
∆ (↓) - 0.19 0.24



E. Additional implementation details and hy-
perparameters

When searching for CV , we evaluate EDM after train-
ing with Mimg = 100 and for Mimg = 200 once CV is
found. We only report k-means cluster conditioning with
k = CV . All our reported FID and FDD values are averages
over 3 runs of 50k images each, each with different random
seeds. Below, we show the hyperparameters we used for all
datasets to enable reproducibility. We always use the aver-
age FID and FDD for three sets of 50K generated images.
The used hyperparameters can be found in Tabs. 4 and 5

To assign the CLIP pseudo-labels (Sec. 4.4) to the train-
ing set, we compute the cosine similarity of the image and
label embeddings using openclip’s ViT-G/14 [6]. The la-
bel embeddings use prompt ensembling and use the five
prompts: a photo of a <label>, a blurry photo of a <label>,
a photo of many <label>, a photo of the large <label>, and
a photo of the small <label> as in [10].



Table 4. Hyperparameters used for training EDM and C-EDM. Bold signifies that the value is changing across datasets. All other parame-
ters of the training setup were identical to the specifications of Karras et. al [7], which are detailed there.

Hyperparameter CIFAR10/CIFAR100 FFHQ-64/AFHQ-64
Optimization
optimizer Adam Adam
learning rate 0.001 0.001
betas 0.9, 0.999 0.9, 0.999
batch size 1024 512
FP16 true true
SongUNet
model channels 128 128
channel multiplier 2-2-2 1-2-2-2
dropout 13% 5% / 25%
Augmentation
augment dim 9 9
probability 12% 15%



Table 5. TEMI hyperparameters

Hyperparameter Value
Head hyperparameters
MLP hidden layers 2
hidden dim 512
bottleneck dim 256
Head final gelu false
Number of heads (H) 50
Loss TEMI
γ 0.6
Momentum λ 0.996
Use batch normalization false
Dropout 0.0
Temperature 0.1
Nearest neibohrs (NN) 50
Norm last layer false
Optimization
FP16 (mixed precision) false
Weight decay 0.0001
Clip grad 0
Batch size 512
Epochs 200
Learning rate 0.0001
Optimizer AdamW
Drop path rate 0.1
Image size 224
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