
A. Additional Results: Explaining distilled and
residual features on Plant Disease Dataset

In the experimental sections, we evaluated our proposed
method to explain and quantify Knowledge Distillation
(KD) on well-established datasets such as ASIRA and CI-
FAR10, showing its versatility and effectiveness in various
scenarios. To further validate the generalisability of our
method, especially for identifying distilled and residual fea-
tures, we also applied it to the plant disease classification.
This additional analysis confirmed the suitability of the pro-
posed explainability technique in challenging datasets. In
this section, we summarise the results, highlighting the abil-
ity of our method to detect salient features essential for di-
agnosing plant diseases and demonstrating its wide applica-
bility to real-world problems.

We generate additional results to visualise distilled
and residual features for plant disease images. Fig. A.1
shows that the Student model (ResNet-50) more accu-
rately localises salient features compared to the Base model
(ResNet-50). Specifically, the distilled features predom-
inantly highlight regions relevant for accurate prediction,
whereas the residual features tend to be distributed over ar-
eas irrelevant to the prediction. This implies that the Student
model learns to ignore the features that are not useful for
the prediction and focus on the salient parts. These saliency
maps align with the findings presented in the main body of
our work (in Fig. 4 and Fig. 6), explaining that the Student
model consistently learns features of better relevance across
different datasets compared to its equivalent Base model.

Figure A.1. Sample visualisation of unique (distilled and residual)
features in Plant disease classification.

Next, we analyse a specific case of the Strawberry Leaf
Scorch plant disease classification, and the Student shows
an improved focus on the crucial signs of the disease on the
leaves (Fig. A.3). The Student model can detect more rele-
vant features for diagnosing Potato Early Blight and Straw-
berry Leaf Scorch.

Figure A.2. Strawberry Leaf Scorch

Figure A.3. Sample visualisation of distilled and residual features
on Strawberry Leaf Scorch plant disease classification.

In our further analysis, we visualised the distilled and
residual features from Layer-3 and Lyer-2(Fig.A.4). The
distilled features mainly localise the diseased areas of the
input image, even though they are challenging to locate.
Meanwhile, the residual features highlighted the areas of
the leaf image that had little impact on plant disease clas-
sification. To conclude, the proposed novel visual explana-
tion and quantitative metrics help to explain and quantify
the knowledge that the Student model learned and failed to
learn from the Teacher model during Knowledge Distilla-
tion.

B. Distance and Partial Distance Correlation
Here, we provide the detailed steps of distance and par-

tial distance correlation following Szelkely et al. [39]. Dis-
tance correlation (dCor) measures linear and nonlinear asso-
ciations or dependence between two random vectors. For an
observed random sample (x, y) = (Xk, Yk) : k = 1, . . . , n
drawn from a distribution of random vectors, the empirical
distance correlation R2

n(x, y) for n samples is derived from
the distance covariance of the samples. To compute the dis-
tance covariance between the samples, we first compute the
n by n distance matrices (aj,k) and (bj,k) containing all
pairwise distances:

aj,k = ∥Xj −Xk∥ , j, k = 1, 2, · · · , n,
bj,k = ∥Yj − Yk∥ , j, k = 1, 2, · · · , n

(B.1)

where ∥.∥ represents the Euclidean norm. Taking all the
doubly centred distances as:

Aj,k := aj,k − aj· − a·k + a··,

Bj,k := bj,k − bj· − b·k + b··,
(B.2)



(a) Layer-3

(b) Layer-2

Figure A.4. Sample visualisation of Distilled and residual features
on Plant disease classification from Layer-3 and Layer-2

where aj· is the jth row mean, a·k is the kth column mean,
and a·· is the grand mean of the distance matrix of the sam-
ple x (the notation is similar for b of sample y), then we
compute the squared sample distance covariance V (x, y) as
the arithmetic average of the products Aj,kBj,k:

V 2
n (x, y) =

1

n2

n∑
j,k=1

Aj,kBj,k. (B.3)

and the distance variance V (x) and V (y) as follows:

dVar2n(x) := V 2
n (x, x) =

1

n2

n∑
j,k=1

A2
j,k. (B.4)

dVar2n(y) := V 2
n (y, y) =

1

n2

n∑
j,k=1

B2
j,k. (B.5)

Distance variance is a measure of the complexity or di-
versity of a single random vector, while distance covariance

is a measure of the dependence or similarity between two
random vectors. Distance variance is a special case of dis-
tance covariance when the two random vectors are identical,
meaning that they have the same information and knowl-
edge. In our context, distance covariance and distance vari-
ance functions are used to measure the amount of knowl-
edge transferred from Teacher to student models during
knowledge distillation. They calculate the degree of depen-
dence or similarity between the Teacher and student models
and the degree of complexity or diversity within each model
based on their outputs or features. The meaning of the result
is as follows:

• A high distance covariance between Teacher and stu-
dent models means that they have a high degree of
similarity or alignment in their information and knowl-
edge, which implies a successful knowledge transfer.

• A low distance covariance between Teacher and stu-
dent models means that they have a low degree of simi-
larity or alignment in their information and knowledge,
which implies an unsuccessful knowledge transfer or a
potential overfitting or underfitting problem.

• A high distance variance for either the Teacher or stu-
dent model means that it has a high degree of com-
plexity or diversity in its information and knowledge,
which implies a high capacity or expressiveness of the
model.

• A low distance variance for either the Teacher or stu-
dent model means that it has a low degree of com-
plexity or diversity in its information and knowledge,
which implies a low capacity or expressiveness of the
model.

Definition 1 (Distance correlation) [39]. For an observed
random sample (x, y) = (Xk, Yk) : k = 1, . . . , n drawn
from a distribution of random vectors X in Rp and Y in
Rq , the empirical distance correlation R2

n(x, y) for n sam-
ples is defined as:

R2
n(x, y) =


V 2
n (x,y)√

V 2
n (x,x)V 2

n (y,y)
, V 2

n (x, x)V
2
n (y, y) > 0

0 , V 2
n (x, x)V

2
n (y, y) = 0

(B.6)
where V 2

n (x, y), V 2
n (x, x) and V 2

n (y, y) are the squared
sample distance covariance. Distance correlation is zero
when the random vectors are independent and one when
they are dependent, indicating a strong correlation between
each other.

Distance correlation (dCor) is a measure of the similar-
ity of the information contained in two random variables.
However, in some situations, we may want to measure the



association between two random vectors after adjusting for
a third random vector. This leads to the concept of par-
tial distance correlation (pdCor), which is an extension of
dCor proposed by Szekely et al. [39]. They introduced a
Hilbert space where the squared distance covariance is an
inner product and showed how to obtain U-centered matri-
ces Ã from the distance matrices (aj,k) such that their inner
product is the distance covariance.

Definition 2 (U − centered matrix) [39]: Let A = (aj,k)
be a symmetric, real valued n×n matrix with zero diagonal,
n > 2. The U-centred matrix of A at the (j, k)th entry is
defined by:

Ãj,k =


aj,k − 1

n−2

∑n
l=1 al,k − 1

n−2

∑n
i=1 aj,i

+ 1
(n−1)(n−2)

∑n
l,i=1 al,i, j ̸= k,

0, j = k

(B.7)

and the inner product between Ã, B̃ is defined as (Ã ·B̃) :=
1

n(n−3)

∑
j ̸=k Ãj,kB̃j,k,

Definition 3 (Partial distance correlation) [39]: Let
(x, y, z) be random variables observed from the joint dis-
tribution of (X,Y, Z), then the partial distance correlation
between x and y controlling for z (assuming it as a con-
founding variable) is given by:

R∗2(x, y; z) :=

{
(P⊥

z (x)·P⊥
z (y))

∥P⊥
z (x)∥∥P⊥

z (y)∥ , ∥P⊥
z (x)∥ · ∥P⊥

z (y)∥ ≠ 0,

0 , Otherwise
(B.8)

where, P⊥
z (x) = Ã − (Ã·C̃)

(C̃·C̃)
C̃, P⊥

z (y) = B̃ −
(B̃·C̃)

(C̃·C̃)
C̃ denotes the orthogonal projection of Ã(x) and

B̃(y) onto C̃(z)⊥ respectively, and (P⊥
z (x) · P⊥

z (y)) =
1

n(n−3)

∑
j ̸=k(P

⊥
z (x)j,k)P

⊥
z (y))j,k) is sample partial dis-

tance covariance.

To summarise, we utilised distance correlation (dCor), a
robust statistical method, to measure the degree of associa-
tion between the Base model and the Student during Knowl-
edge Distillation (KD). Furthermore, we used partial dis-
tance correlation (pdCor) to extract the distilled and residual
features. This approach, coupled with gradient-based vi-
sual explainability techniques, helped to propose UniCAM,
which explains the KD process and provides a better un-
derstanding of the knowledge it acquired and overlooked
during KD.

B.1. Theoretical Basis of Feature Subtraction in
UniCAM

The subtraction operation in the formulation of UniCAM
is used to remove the shared feature representations be-

tween the Student and the Base model or vice versa, identi-
fying features unique to each model. This approach is con-
ceptually similar to orthogonal projection in linear algebra,
where a vector is decomposed into components: one that
lies along a reference direction and another orthogonal to it.
In this case, consider the features xs (Student features) and
xb (Base model features). The shared features between xs

and xb are represented by their projection:

projxb
(xs) =

⟨xs, xb⟩
⟨xb, xb⟩

xb, (B.9)

where ⟨·, ·⟩ represents the inner product, and this term quan-
tifies the component of xs aligned with xb.

Now, xs can be decomposed into two orthogonal com-
ponents: 1. The component is aligned with xb (shared fea-
tures): projxb

(xs). 2. The component orthogonal to xb

(unique features): xs|unique = xs − projxb
(xs).

Thus, the subtraction is valid and justified because:

xs = projxb
(xs) + (xs − projxb

(xs)),

where projxb
(xs) identifies the shared features, and xs −

projxb
(xs) gives the unique features.

In UniCAM, we work in the transformed space of pair-
wise distance matrices and the features are adjusted for mu-
tual influence using a U-centered distance matrix, P (s) and
P (b). This provides a robust mechanism to capture the re-
lational structure of the features rather than their absolute
values. This approach is invariant to shifts or rotations in
the feature space, and the analysis focuses on the geomet-
ric relationships between features. The shared features are
calculated as follows:

Sharedxs
=

⟨P (s), P (b)⟩
⟨P (b), P (b)⟩

P (b). (B.10)

The unique features of the Student, after removing the
shared features, are:

xs|unique = P (s) − Sharedxs . (B.11)

This subtraction extracts the component of P (s) orthogo-
nal to P (b), preserving only the unique features of xs that do
not exist in xb. The operation is mathematically valid due to
the properties of vector spaces, where such decomposition
is meaningful in terms of orthogonal projections.

C. Steps on Feature Extraction
In this section, we explain the step-by-step feature ex-

traction from the relevant regions (which was briefly intro-
duced in Eq. 7, Section 3.2 in the main paper). Given a
Base model or a Student, then we can extract the features as
follows:

x̂ = f(I ⊙H) (C.1)



where I is the input image, H is the saliency map gener-
ated using UniCAM, ⊙ is the element-wise multiplication
operator, and f is a feature extraction function. We ex-
tract the features by applying perturbation technique [34]
that modifies the input image I by replacing each pixel Iij
with the weighted average of its neighbouring pixels in the
highlighted region as follows:

I ′ij =
∑
k,l

wklIkl (C.2)

where wkl is a weight that depends on the relevance of pixel
Ikl for prediction. The relevance of each pixel is determined
by the saliency map generated using UniCAM, which pro-
duces a heatmap H that assigns a value to each pixel based
on its contribution to the relevant features learned by one
model. The higher the value, the more relevant the pixel is.
The weight wkl is proportional to H, such that:

wkl =
Hkl∑
k,l Hkl

(C.3)

Therefore, we can write Eq. C.2 as:

I ′ij =
∑
k,l

Hkl∑
k,l Hkl

Ikl. (C.4)

We can simplify this equation by using element-wise
multiplication and division operators and rewrite Eq. C.4
as follows:

I ′ =
I ⊙H∑

H
, (C.5)

where
∑

H is a scalar that represents the sum of all ele-
ments in H. This equation shows how we obtain a modified
image I ′ that contains only the features of interest for each
model. To extract these features into a vector representa-
tion, we apply a feature extraction function f to I ′:

x̂ = f(I ′). (C.6)

We substitute Eq. C.5 into Eq. C.6 to obtain:

x̂ = f(
I ⊙H∑

H
). (C.7)

Since
∑

H is a scalar, we can ignore it for feature ex-
traction purposes, as it does not affect the relative values of
the pixels. Therefore, we simplify Eq. C.7 to:

x̂ = f(I ⊙H). (C.8)

This is the step-by-step formulation to extract features from
the regions identified as relevant using UniCAM or other
gradient-based visual explainability.

Fig. C.1 illustrates the results of the perturbed images
I ′ = I ⊙ H for plant disease classification. First, we use

Figure C.1. The residual and distilled features.

UniCAM to extract and explain the distilled and residual
features from the original images. The distilled features fo-
cus on the diseased areas of the leaves, which are crucial for
diagnosis, while the residual features are spread across the
background or non-essential parts of the leaves. Next, we
apply a perturbation technique proposed by Rong et al. [34]
to modify the images based on pixel relevance. We then
feed the modified images to the Student or Base model and
obtain the corresponding feature vectors, x̂s or x̂b. Finally,
we use FSS and RS to measure the feature similarity and rel-
evance of the feature vectors. The heatmap intensity for dis-
tilled features indicates a higher contribution to the classifi-
cation decision, resulting in more distinct and less perturbed
images of the critical areas for diagnosis after perturbation.

D. Experimental Details

D.1. Training Setup

For our experiments, we employed three widely-used
KD techniques: Response-based KD, Overhaul feature-
based KD, and Attention-based KD. The training of the Stu-
dent model followed an offline KD setup, where the Teacher
model was pre-trained before being used to guide the Stu-
dent. For the Teacher model, we used the Cross Entropy
(CE) loss to optimise its performance based solely on the
training data.

The Student model’s training incorporated both the CE
loss for the training data and the additional loss func-
tion specific to the KD technique applied, as recom-
mended in their respective literature. For Response-based
KD, the distillation loss minimised the divergence be-
tween the Teacher and Student outputs. Overhaul feature-
based KD introduced intermediate feature-level supervi-
sion, and Attention-based KD utilised attention maps from
the Teacher to align the Student’s attention patterns.

In cases where the Student and Teacher shared the same



architecture, we used the Teacher model as the Base model
for comparison. When the Teacher and Student had dif-
ferent architectures, the Base model was trained using the
same experimental settings as the Student, except without
the Teacher’s guidance, and optimised using only the CE
loss.

D.2. Selecting Layers

We mainly employ ResNet family models, ResNet-18,
ResNet-50, and ResNet-101, as the main convolutional neu-
ral network architectures for our implementation. We gen-
erate Grad-CAM and UniCAM outputs from the last resid-
ual blocks in each of the four layers of the ResNet models.
We denote these blocks as L1, L2, L3 and L4 and the details
of these blocks are as follows:

ResNet-18: This network has four layers with 2 resid-
ual blocks each. Each residual block has two convolutional
layers, batch normalisation and ReLU activation. The first
convolutional layer has a kernel size of 3× 3 and preserves
the number of channels. The second convolutional layer
has a kernel size of 3 × 3 and also preserves the number
of channels. The skip connection may have a convolutional
layer to match the dimensions of the input and output. The
last blocks in each layer have 64, 128, 256 and 512 output
channels, respectively. Hence, each layer Li represents the
following:

• L1: This block is the second and last block in the first
layer. It has two convolutional layers with 64 output
channels each.

• L2: This block is the second and last block in the sec-
ond layer. It has two convolutional layers with 128
output channels each.

• L3: This block is the second and last block in the third
layer. It has two convolutional layers with 256 output
channels each.

• L4: This block is the second and last block in the
fourth layer. It has two convolutional layers with 512
output channels each.

ResNet-50: This network has four layers with 3, 4, 6
and 3 residual blocks, respectively. Each residual block
has three convolutional layers with batch normalisation and
ReLU activation. The first convolutional layer has a kernel
size of 1×1 and reduces the number of channels by a factor
of 4. The second convolutional layer has a kernel size of
3× 3 and preserves the number of channels. The third con-
volutional layer has a kernel size of 1× 1 and increases the
number of channels by a factor of 4. The skip connection
may also have a convolutional layer to match the dimen-
sions of the input and output. The last blocks in each layer
have 256, 512, 1024 and 2048 output channels, respectively.
Hence, each layer Li represents the following:

• L1: This block is the third and last block in the first
layer. It has three convolutional layers with 64, 64 and
256 output channels, respectively. The skip connection
does not have a convolutional layer.

• L2: This block is the fourth and last block in the sec-
ond layer. It has three convolutional layers with 128,
128 and 512 output channels, respectively.

• L3: This block is the sixth and last block in the third
layer. It has three convolutional layers with 256, 256
and 1024 output channels, respectively.

• L4: This block is the third and last block in the fourth
layer. It has three convolutional layers with 512, 512
and 2048 output channels, respectively.

ResNet-101: This network has four layers with 3, 4,
23 and 3 residual blocks, respectively. Each residual block
has three convolutional layers with batch normalisation and
ReLU activation. The first convolutional layer has a kernel
size of 1×1 and reduces the number of channels by a factor
of 4. The second convolutional layer has a kernel size of
3× 3 and preserves the number of channels. The third con-
volutional layer has a kernel size of 1× 1 and increases the
number of channels by a factor of 4. The skip connection
may have a convolutional layer to match the dimensions of
the input and output. The last blocks in each layer have 256,
512, 1024 and 2048 output channels, respectively. Hence,
each layer Li represents the following:

• L1: This block is the third and last block in the first
layer. It has three convolutional layers with 64, 64 and
256 output channels, respectively.

• L2: This block is the fourth and last block in the sec-
ond layer. It has three convolutional layers with 128,
128 and 512 output channels, respectively.

• L3: This block is the twenty-third and last block in the
third layer. It has three convolutional layers with 256,
256 and 1024 output channels, respectively.

• L4: This block is the third and last block in the fourth
layer. It has three convolutional layers with 512, 512
and 2048 output channels, respectively.
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