
Supplementary Material of AdaPrefix++: Integrating Adapters, Prefixes and
Hypernetwork for Continual Learning

Sayanta Adhikari1, Dupati Srikar Chandra1, P. K. Srijith1, Pankaj Wasnik2, Naoyuki Oneo2

1Indian Institute of Technology Hyderabad, India 2Sony Research India, India
{ai22mtech12005, ai20resch11004}@iith.ac.in, srijith@cse.iith.ac.in,

{Pankaj.Wasnik, naoyuki.onoe}@sony.com

In the supplementary section, we provide details on our approaches, AdaPrefix and AdaPrefix++. In Appendix A, we
provide the inference algorithm for our approach for different scenarios (TIL, CIL). In Appendix B.2 and Appendix B.3, we
provide details about different experimental choices we considered while performing the experiments. In Appendix B.1.1, we
provide different transformations associated with a transformer block when adapters and prefixes are added to a transformer
block. In Appendix C, Appendix D and Appendix E, we provide different experiments for the voices of the hyperparameter
that we have taken. In Appendix F.1, we provide details related to computational overheads for our approach and per-
task running time for our experiments. In Appendix F, we further provide other experiments of our approach, showing the
robustness of our approach in multiple setups. Tab. 5, Tab. 7, Tab. 10 and Tab. 12 provides results of comparison between
our approach and different baselines in task-incremental and class-incremental scenarios. Tab. 6, Tab. 8, Tab. 11, and Tab. 13
provides results for different task orders for our approach AdaPrefix++. These experiments show that our approach doesn’t
change much with a change in the task order, showing our approach’s robustness towards task order.

A. Algorithms
In this section, we provide the pseudo-code for the Inference algorithm of our approach AdaPrefix++. Algorithm 1

provides two inference algorithms, the first for TIL Inference and the second for CIL Inference. The inference algorithm for
DIL is similar to CIL. All the notations used in the algorithm are the same as presented in the main paper.

Algorithm 1 AdaPrefix++ Inference Algorithm

1: procedure INFERENCE TIL(Trained Model F̂ , Input (Xt
∗, T t)) ▷ Task Incremental Inference

2: Get prefix parameters using PAt
i ← H([eAt, lAi]; θh) where A ∈ {K,V }.

3: Get adapter weights, ϕt.
4: pt∗ ← F̂ (Xt

∗; Θp, θh, ϕ
t, θtcls,L)

5: argmaxc∈{1,··· ,C} p
t
∗[c] is the predicted class.

6: end procedure
7: procedure INFERENCE CIL(Trained Model F̂ , Input (X∗)) ▷ Class Incremental Inference
8: Logit List = []
9: for t← 1 to T do

10: Get prefix parameters using PAt
i ← H([eAt, lAi]; θh) where A ∈ {K,V }.

11: Get adapter weights, ϕt.
12: pt∗ ← F̂ (X∗; Θp, θh, ϕ

t, θtcls,L)
13: Logit List.append(pt∗)
14: end for
15: t̂← argmink∈[T]E(Logit List[k]) ▷ Entropy, E(p) = −

∑
i pi log(pi)

16: argmaxc∈{1,··· ,C} p
t̂
∗[c] is the predicted class. ▷ pt̂∗ ← Logit List[t̂]

17: end procedure

1

B. Implementation Details
In this section, we provide implementation details related to the different backbones used, the transformation associated

with a standard transformer block when adapters and prefixes are added to it, and all our architectural choices. In this section,
we also provide details related to the baselines used and methods used to compare them in the case of the TIL scenario. In
this section, we also provide details related to optimization.

B.1. Backbone PLMs

For our study, we have considered various sizes of backbone PLMs in the domain of large pre-trained vision models.
We have considered ViT-Large (ViT-L), ViT-Base (ViT-B), DeiT-Small (DeiT-S), and DeiT-Tiny (DeiT-T). Details of these
models are provided in the Tab. 1

Table 1. Backbone PLM

Backbone PLM #Parameters #Layers #Heads embed dim

ViT-L 307M 24 16 1024
ViT-B 85M 12 12 768
DeiT-S 21M 12 6 384
DeiT-T 5M 12 3 192

B.1.1 Transformations in the Transformer Block of PLMs

Let us consider the transformations in the ith layer (among L layers) for task t (among T tasks) in a transformer block of the
proposed AdaPrefix approach. The transformer block mainly has two parts: a MHA and a FFN Layer. Our approach changes
the MHA using Prefixes and changes the FFN using Adapters.

In the MHA associated with ith layer, task-specific hidden representation hti−1 ∈ Rm×d from the previous layer is
transformed into query Qt

i, key Kt
i and, value V t

i using WQ
i ,W

K
i ,WV

i ∈ Rd×d transformation matrices.

At
i = hti−1W

A
i where A ∈ {Q,K, V } (1)

The parameters WQ
i ,W

K
i ,WV

i are obtained from a PLM’s ith layer. After this, each At
i is divided into nh heads, At

i =
[At

i,1, A
t
i,2, · · · , At

i,nh
] whereAt

i,j ∈ Rm×dh and dh = d/nh. Now, we perform task-specific variations in the ith layer MHA
by concatenating the task-specific prefixes with these keys and values. Task-specific prefixes can be learnable parameters or
generated according to the MLP re-parameterization. Here, a lower-dimensional prefix (p̂ti) is passed through an MLP, and
then the resulting prefixes P t

i = MLP (p̂ti;ψ
t
i) are added to keys and values of this layer. ψt

i are the parameters associated
with the MLP used to generate prefixes. The task-specific prefixes P t

i = {PK,t
i , PV,t

i } ∈ Rn×d are concatenated with Kt
i

and V t
i . To perform head-wise concatenation, task-specific prefixes are divided into h heads PB,t

i = [PB,t
i1 , PB,t

i,2 , · · · , P
B,t
i,h]

where B ∈ {K,V }, and PB,t
i,j ∈ Rn×dh ∀ j = {1, 2, · · · , h}. The new keys and values for ith layer and tth task are

B̄t
i =

[
[PB,t

i,1 , B
t
i,1], [P

B,t
i,2 , B

t
i,2], · · · , [P

B,t
i,h , B

t
i,h]

]
(2)

where B ∈ {K,V } and B̄t
i ∈ R(n+m)×d. After the Prefix concatenation, it is passed to the attention block. Consider h̄ti is

the output of the MHA block of ith layer.

h̄ti = MHA(Qi, K̄
t
i , V̄

t
i) = concat(headti1, head

t
i2, · · · , headtih)WO

i + ht(i−1) (3)

Here, concat(· · ·) is a function that symbolises concatenation operation. WO
i ∈ Rd×d is a projection matrix applied after

concatenating the heads and is obtained from the PLM. The heads are obtained as

headtij = Attn(Qij , K̄
t
ij , V̄

t
ij)

Attn(Q, K̄, V̄) = Softmax(QK̄T /
√
dh)V̄

(4)

The hidden representation obtained after the MHA h̄ti is passed through the backbone transformer’s FFN layer to obtain
ĥti = FFN(h̄ti). After FFN, ĥti is passed through a task-specific adapter to capture task-specific knowledge and the conse-
quent representation is obtained as ¯̄hti = At

i(ĥ
t
i) = ĥti + U t

i
T
σ(St

i
T
ĥti). Let Φt

i denote the collection of adapter parameters
U t
i ∈ Rr×d and St

i ∈ Rr×d associated with tth task and ith layer, where r represents the reduced dimension associated with
the adapter. The final output of the ith layer of the transformer encoder block hti is given as hti = h̄ti+

¯̄hti. The output from the
final layer of the transformer block is passed through the task-specific classification head to get the probability distribution
over the classes ptk.

B.2. Architecture Details

Our approaches, AdaPrefix and AdaPrefix++, are based on an adapter, prefixes and hypernetwork. Each of these compo-
nents has different parameters that need to be chosen. In the sections below, we provide details about the choices we have
considered for our experiments.

B.2.1 AdaPrefix

AdaPrefix architecture is a combination of adapters and prefixes. For adapters, we have considered the down-scaling di-
mension (denoted by reduction factor) as an embedding dimension of the PLM divided by 8, i.e., reduction factor will be
8 (Appendix E). We used ReLU non-linearity in adapters and initialized adapter weights using mam initilization as per [3].
Each adapter accounts for approximately 2% of the backbone PLM parameters per task. In the case of prefixes, the primary
decision to be considered is the prefix length, i.e., the number of prefix vectors to be concatenated with keys and values
of each MHA layer. We fixed the prefix length to 15 (Appendix E). Additionally, we used a two-layer MLP with ReLU
non-linearity to perform reparameterization for the prefixes. Each set of prefixes takes around 0.4% of the backbone PLM
parameters. AdaPrefix takes around 2.4% parameters of the backbone PLM per task.

B.2.2 AdaPrefix++

combines adapters, prefixes and hypernetwork. The choices for adapters and prefixes remain consistent with AdaPrefix.
For the hypernetwork, we employed a two-layered MLP with ReLU non-linearity. We determined the layer-embedding
and task-embedding dimensions to be 64, chosen from the set 32, 64, 128, resulting in an input dimension of 128 for the
hypernetwork. The output dimension of the hypernetwork is equal to the embedding dimension of the PLM. Adaprefix++
takes approximately 2.07% task-specific parameters of the backbone and 0.63% common parameters across all tasks. In total,
the number of parameters in the case of AdaPrefix++ is (2.07T + 0.63)%, where T is the total number of tasks.

B.2.3 Other Baselines

We had a different classifier for Sequential Finetuning with backbone frozen (FT-seq-frozen), and we only trained the clas-
sifier head on the downstream task. For CIL in FT-seq-frozen, we used the same entropy-based choice that was used in
AdaPrefix and AdaPrefix++. For EWC, we set the regularization constant to 10 in our experiments. Regarding ER, we
considered 100 samples per class during our experiments. For Adapters, we trained the adapters and classifiers for each task,
and for CIL inference, we used entropy-based scores to choose the task-id. As for LAE-Prefix and LAE-Adapter, we used
the same approach as provided in [2]. For TIL, we trained different classifiers for different tasks. As for L2P, DualPrompt,
CODA-Prompt, S-Prompt and HiDe-Prompt, we considered the setup provided in the paper [8]. All these prompt-based
approaches were trained in a CIL fashion. We introduced distinct classifiers for different tasks to ensure a fair comparison
in the TIL scenario. Depending on the provided task IDs, we selected the appropriate classifier during TIL inference. CIL
inference was done according to the algorithms provided by their respective papers [7–11].

B.3. Optimization Details

We used Adam Optimizer for both approaches (with β1 & β2 values equal to 0.9 & 0.999 respectively) with cosine decay
of the learning rate. The learning rate was determined as 0.001× (batch size/256) across all setups, consistent with recent
literature [8–11]. Image inputs were resized to 224 × 224 and normalized to [0, 1] for all the experiments. We considered
the batch size of 128 for all our experiments, except for ViT-L, which had a batch size of 64 because of limited memory.
For training of our model, we used a single GPU of NVIDIA V100, and it took 42 mins to train each of AdaPrefix and
AdaPrefix++, with ViT-B backbone on Split-CIFAR100 setup for five epochs. We chose the appropriate number of epochs

for different backbone sizes to achieve convergence. For ViT-L, in all datasets, we considered three epochs; for ViT-B, in all
cases, we considered five epochs; for DeiT-S, ten epochs; and DeiT-T, 15 epochs.

For all the experiments, image inputs were resized to 224× 224 and normalized to [0, 1] We considered the batch size of
128 for all our experiments, except for ViT-L, where we had a batch size of 64, because of limited memory. For training of our
model, we used a single GPU of NVIDIA V100, and it took 44 mins to train each, AdaPrefix and AdaPrefix++, with ViT-B
backbone on Split-CIFAR100 setup for five epochs. We chose the appropriate number of epochs for different backbone sizes
to achieve convergence. For ViT-L, in all datasets, we considered three epochs; for ViT-B, in all cases, we considered five
epochs; for DeiT-S, ten epochs; and DeiT-T, 15 epochs.

C. Different Layer Embeddings
Layer embeddings are the identifiers provided to the hypernetwork to give it an understanding of the hierarchical behaviour

of different layers of the main network, in our case, the PLM. These components are independent of tasks and require to be
task-agnostic and common across all the tasks. Good embedding will lead to better layer segregation and provide almost all
the information about the hierarchy, which helps the hypernetwork to generate properly.

To understand this effect, we tried 5 different kinds of layer embeddings. Two among them are learnable, and 3 are fixed.
1) full learnable: We initialize random layer embeddings and let them get trained along with all other parameters for all the
tasks. This might have an adverse effect of catastrophic forgetting. 2) first learnable: We initialize random layer embeddings
and let them get trained with all other parameters only for the first task. The remaining tasks are kept frozen. This reduces
the catastrophic forgetting in layer embeddings, but the layer embeddings will have a certain knowledge of the first task,
which might adversely affect further tasks. 3) fixed random: We initialize random layer embeddings and then freeze it for
all the tasks. This makes it task-agnostic and fixed for all tasks. However, it fails to provide any extra information about the
hierarchy of the main architecture. 4) fixed sine: We initialize sinusoidal embeddings with each layer embeddings having a
value associated with different sine wave frequencies. Specifically, as we go deeper into the main network layers, the higher
sine wave frequencies are. After initializing, they are kept fixed for all tasks. 5) fixed One-Hot: We initialize each layer
embedding with a one-hot encoding of the corresponding layer number. For example, layer embeddings for 3rd layer will be
[0, 0, 1, 0, 0, · · · , 0]T . If the layer embedding has a dimension, n× nL, the corresponding column will be [1, 1, · · · , 1]T , and
all other values will be zeroed. After initializing these layer embeddings are kept fixed for the whole training period.

Tab. 2 provides the performance of our approach AdaPrefix++ on different backbones and datasets for all the different
initialization of embeddings. We can observe from Tab. 2 that fixed One-Hot performs on par or better in all datasets for TIL
and CIL scenarios. To get uniformity in all the experiments, we fixed the layer embeddings to fixed One-Hot for all the other
experiments.

Table 2. This table provides average accuracy (↑) of AdaPrefix++ for different backbone PLM, on different datasets, for different initial-
ization of layer embeddings. Details related to all the layer embeddings are provided in Appendix C.

Layer Embeddings TIL CIL

ViT-B DeiT-S DeiT-T ViT-B DeiT-S DeiT-T

CIFAR100

full learnable 97.04 96.04 92.89 96.28 95.37 91.25
first learnable 97.71 95.69 92.90 96.46 95.17 91.48
fixed random 97.36 95.94 93.06 96.53 95.18 91.67

fixed sine 97.64 95.58 92.31 96.39 94.77 90.69
fixed One-Hot 97.76 95.88 93.24 96.81 94.98 91.90

ImageNet-R

full learnable 89.50 85.31 74.11 83.78 80.48 66.86
first learnable 88.84 85.27 74.02 82.73 80.59 66.78
fixed random 89.09 85.46 74.16 83.51 80.64 66.78

fixed sine 89.22 85.09 72.93 84.41 79.55 66.04
fixed One-Hot 89.51 85.25 74.24 84.26 79.81 67.80

D. Different Layer Importance
In this section, we experiment with our approach AdaPrefix++ for different layers of a PLM architecture. Adding AdaPre-

fix++ to different layers performs differently. It is also important to understand whether is it necessary to add AdaPrefix++
to all the layers and also to what extent we should add it to get sufficient performance. In Tab. 3, we showed performance on
multiple combinations of layers (not all possible) to get a better insight into this matter. We tried different combinations like
final 1 layer (f1), initial 1 layer (i1), final 4 layers (f4), initial 4 layers (i4), final 3 and initial 3 layers (i3f3), all odd layers
(odd), all even layers (even) and finally all layers (all).

We infer from Tab. 3 that we need to add to the final layers for better CIL performance. Adding to initial layers improves
TIL performance, but the TIL-to-CIL performance drop is huge, as visible for i1 and i4 in the table. We can also infer that
for smaller models, adding it to more layers has also helped in increasing the performance. In the case of ImageNet-R, it’s
visible that adding it to all the layers performs best for all scenarios. Whereas in the case of CIFAR100, for ViT-B backbone,
alternate layers also perform better in TIL, whereas on Par in CIL. To have uniformity in all the experiments, we added
AdaPrefix++ to all the layers of the PLM, as it provides better performance in almost all the cases.

Table 3. This table provides average accuracy (↑) of AdaPrefix++ when added to different layers. f# = Final # Layers, i# = Initial # Layers

Different Layers TIL CIL

ViT-B DeiT-S DeiT-T ViT-B DeiT-S DeiT-T

CIFAR100

f1 94.74 85.55 70.84 88.22 74.58 52.62
i1 97.75 94.89 78.98 28.09 29.96 20.71
f4 97.01 91.01 84.37 95.99 88.23 76.04
i4 98.05 95.66 88.77 57.04 54.97 39.25

i3f3 97.81 94.85 89.23 96.30 92.48 80.63
odd 98.05 95.72 88.71 96.41 94.48 82.09
even 97.91 95.74 88.20 95.05 93.39 79.01
all 97.71 95.69 92.90 96.46 95.17 91.48

ImageNet-R

f1 79.66 67.21 47.23 64.97 41.77 30.30
i1 87.85 80.60 68.85 21.96 20.61 16.86
f4 84.87 76.66 56.34 78.87 67.61 46.27
i4 88.57 82.96 68.84 37.80 37.47 27.12

i3f3 87.19 82.35 65.51 80.82 72.27 48.17
odd 89.11 83.96 67.53 81.24 74.27 55.97
even 88.76 84.75 68.65 74.31 73.61 50.31
all 88.84 85.27 74.02 82.73 80.59 66.78

E. Combination of Adapter and Prefixes Hyperparameters
AdaPrefix and AdaPrefix++ are formed by a combination of adapters and prefixes. Both adapters and prefixes have their

own hyperparameters, which must be tuned for these combinations. The hyperparameter associated with the adapter is its
reduction factor (Main Paper Sec 3.3). The hyperparameter associated with prefixes is its prefix length (Main Paper Sec 3.2).
To get optimal hyperparameter values for our setup, we performed a grid search on all possible pairs formed using adapter
reduction factor set {2, 4, 8, 16, 32} and prefix length set {10, 15, 20, 30, 40, 50, 60, 80, 100}.

Fig. 1 shows a heatmap showing the performance of AdaPrefix for different combinations of hyperparameters on CI-
FAR100 datasets with a backbone of ViT-B. From the heatmap, we can observe that we got optimal performance with an
adapter reduction factor of 8 and a prefix length of 15. We fixed the adapter reduction factor to 8 for all the experiments and
the prefix length to 15.

Figure 1. This heatmap shows a search over the hyperparameters of AdaPrefix [reduction factor of adapters (X-axis) and a prefix length
of prefixes (Y-axis)]. We performed a grid search over the hyperparameters to determine which combination works the best (according to
average accuracy). This plot considers ViT-B as the backbone and Split-CIFAR100 as the dataset to perform the experiment (TIL setting).
In this case, the choice of prefix length as 15 and the reduction factor as 8 gave the best results (highlighted with red box).

F. Results
This section provides results related to different benchmark datasets, Split-CIFAR100, Split-ImageNet-R, 5-Datasets and

CDDB-Hard. We give their average accuracy and variances computed for three random initializations. We also provide
results on the performance change for different orders of tasks for AdaPrefix++. No change occurs for AdaPrefix as it is
based on the parameter-isolation method. For CIFAR100, ImageNet-R, 5-datasets and CDDB-Hard, we randomly shuffled
the task orders into five permutations.

F.1. Computational Overheads

This section details parameter growth (in percentage) for different tasks. Tab. 4 shows that AdaPrefix++ reduces parameter
growth compared to AdaPrefix with a boost in performance because of knowledge transfer across tasks. The time taken to
train each task for AdaPrefix++ is also less compared to Adapters, Prefix and AdaPrefix.

Table 4. This table provides values for CIFAR100 dataset, with VIT-B as backbone. The per cent of parameter growth is provided compared
to backbone architecture. The formula used is [(Method Parameters) / (Backbone Parameter)] * 100. Running time is provided for training
on a single GPU, NVIDIA Tesla V100, with a batch size of 128.

Adapter Prefix Hnet+Prefix AdaPrefix AdaPrefix++

Task-Specific Parameter
per task (in percent) 2.15 0.9 0.003 2.4 2.07

Common Parameters
across all task (in percent) - - 0.43 - 0.43

Total Parameters
after T tasks (in percent) 2.15 ×|T | 0.9 ×|T | 0.003 ×|T | + 0.43 2.4 ×|T | 2.07 ×|T | + 0.43

Training Time per task 51 mins 46 mins 42 mins 47 mins 44 mins

Inference Time per 128 image 3.98 ms 4 ms 3.69 ms 3.98 ms 3.69 ms

Memory Consumption (MB) 389.50 345.33 323.80 444.50 403.35

F.2. Split-CIFAR100

For the Split-CIFAR100 dataset, we consider the CIFAR100 [5] dataset (100 classes in total) and divide it into ten different
disjoint tasks, each containing ten classes. In CIFAR100, small-scale examples of 32 × 32 pixels are present. Tab. 5 presents
results for average accuracy over all tasks for different baselines and our approaches. Tab. 6 provides results for five different
task orders for Split-CIFAR100 dataset.

Table 5. Average Accuracy (↑) of all the baselines along with our approaches, on CIFAR100 dataset is provided in this table.

Methods ViT-L ViT-B DeiT-S DeiT-T

Task Incremental Learning (TIL)

FT-seq-frozen 83.52 ± 0.31 80.25 ± 0.41 62.48 ± 0.41 55.66 ± 0.87
EWC 85.25 ± 0.52 81.49 ± 0.81 62.94 ± 0.57 56.68 ± 0.75
ER 89.21 ± 0.21 85.23 ± 0.85 69.08 ± 0.25 59.45 ± 0.81
Adapter 97.64 ± 0.12 96.45 ± 0.11 93.20 ± 0.17 92.00 ± 0.13
LAE-Prefix 97.01 ± 0.45 96.89 ± 0.31 91.15 ± 0.46 89.69 ± 0.74
LAE-Adapter 97.51 ± 0.37 96.89 ± 0.29 92.44 ± 0.64 89.24 ± 0.71
L2P 94.95 ± 0.15 94.35 ± 0.19 88.33 ± 0.22 84.02 ± 0.11
DualPrompt 95.12 ± 0.11 94.90 ± 0.21 90.14 ± 0.21 85.16 ± 0.21
CODA-Prompt 96.00 ± 0.53 95.52 ± 0.76 89.86 ± 0.85 85.35 ± 0.69
S-Prompt 96.99 ± 0.18 96.85 ± 0.13 92.45 ± 0.13 85.90 ± 0.21
Hide-Prompt 98.14 ±0.28 97.50 ± 0.19 95.25 ± 0.16 87.00 ± 0.17
AdaPrefix 97.82 ± 0.12 97.10 ± 0.31 94.50 ± 0.35 92.92 ± 0.26
AdaPrefix++ 98.14 ± 0.14 97.76 ± 0.13 95.88 ± 0.19 93.24 ± 0.22

Class Incremental Learning (CIL)

FT-seq-frozen 17.94 ± 0.98 17.59 ± 0.76 15.28 ± 0.89 12.85 ± 0.78
EWC 64.12 ± 0.64 59.49 ± 0.21 62.94 ± 0.48 56.68 ± 0.72
ER 76.25 ± 0.44 71.53 ± 0.14 69.08 ± 0.67 59.45 ± 0.13
Adapter 96.79± 0.21 94.99 ± 0.23 92.11± 0.29 90.10 ± 0.31
LAE-Prefix 89.75 ± 0.35 89.25 ± 0.48 86.15 ± 0.41 84.69 ± 0.44
LAE-Adapter 90.01 ± 0.52 89.59 ± 0.57 86.45 ± 0.51 80.51 ± 0.62
L2P 84.20 ± 0.17 83.06 ± 0.32 78.21 ± 0.31 71.02 ± 0.21
DualPrompt 87.10 ± 0.18 86.60 ± 0.15 81.14 ± 0.10 72.46 ± 0.25
CODA-Prompt 88.56 ± 0.63 86.94 ± 0.75 81.86 ± 0.14 70.35 ± 0.19
S-Prompt 89.41 ± 0.11 88.81 ± 0.14 84.45 ± 0.86 79.90 ± 0.41
Hide-Prompt 93.25 ± 0.28 92.61 ± 0.14 86.25 ± 0.42 80.11 ± 0.10
AdaPrefix 96.92 ± 0.22 96.11 ± 0.19 93.20 ± 0.12 89.75 ± 0.22
AdaPrefix++ 96.99 ± 0.05 96.81 ± 0.37 94.98 ± 0.18 91.90 ± 0.31

Table 6. We provide Average Accuracy over tasks for different task orders for AdaPrefix++ on CIFAR100, with ViT-B backbone

Different Orders Order 1 Order 2 Order 3 Order 4 Order 5 Average
TIL 97.71 97.03 97.33 97.35 97.55 97.39
CIL 96.75 96.30 96.68 96.70 96.62 96.61

F.3. Split-ImageNet-R

For the Split-ImageNet-R dataset, we considered the ImageNet-R [4] dataset (200 classes in total) and divided it into ten
different disjoint tasks, each containing 20 classes. ImageNet-R contains 200 class large-scale images of hard examples from
ImageNet [1] dataset or newly collected examples of different styles. Tab. 7 presents results for average accuracy over all
tasks for different baselines and our approaches. Tab. 8 provides results for five different task orders for Split-ImageNet-R
dataset. Tab. 9 provides results of Imagenet-R in a more challenging setting where different tasks have different amounts of
complexity. We varied the task complexity by introducing different numbers of classes in different tasks. The table shows
that AdaPrefix++ performs better in all the cases for both TIL and CIL settings compared to Hide-Prompt.

Table 7. Average Accuracy (↑) of all the baselines along with our approaches on the ImageNet-R dataset is provided in this table.

Methods ViT-L ViT-B DeiT-S DeiT-T

Task Incremental Learning (TIL)

FT-seq-frozen 64.58 ± 0.89 63.15 ± 0.87 54.78 ± 0.78 50.17 ± 0.94
EWC 64.25 ± 0.81 63.12 ± 0.12 51.10 ± 0.38 49.22 ± 0.15
ER 71.11 ± 0.23 71.10 ± 0.58 60.12 ± 0.56 58.10 ± 0.13
Adapter 87.87 ± 0.18 87.50 ± 0.12 84.00 ± 0.15 72.50 ± 0.22
LAE-Prefix 83.11 ± 0.28 81.89 ± 0.26 73.14 ± 0.29 70.01 ± 0.34
LAE-Adapter 88.41 ± 0.35 88.14 ± 0.31 85.10 ± 0.36 72.51 ± 0.39
L2P 76.99 ± 0.11 75.65 ± 0.11 69.25 ± 0.16 61.25 ± 0.24
DualPrompt 76.54 ± 0.17 75.99 ± 0.26 69.54 ± 0.14 63.95 ± 0.29
CODA-Prompt 82.21 ± 0.45 79.03 ± 0.85 72.40 ± 0.75 66.25 ± 0.84
S-Prompt 79.24 ± 0.21 77.68 ± 0.21 72.21 ± 0.13 66.21 ± 0.21
Hide-Prompt 87.54 ± 0.12 85.06 ± 0.31 79.21 ± 0.12 69.99 ± 0.13
AdaPrefix 88.31 ± 0.32 87.95 ± 0.12 84.45 ± 0.16 73.72 ± 0.13
AdaPrefix++ 89.79 ± 0.31 89.51 ± 0.19 85.25 ± 0.45 74.24 ± 0.25

Class Incremental Learning (CIL)

FT-seq-frozen 15.93 ± 0.94 14.63 ± 0.89 13.98 ± 1.01 10.11 ± 1.56
EWC 52.10 ± 0.82 49.11 ± 0.78 45.28 ± 0.98 41.02 ± 0.82
ER 57.10 ± 0.64 49.55 ± 0.62 49.52 ± 0.85 45.25 ± 0.56
Adapter 81.25 ± 0.15 81.11 ± 0.18 72.22 ± 0.13 62.10 ± 0.19
LAE-Prefix 78.84 ± 0.82 77.55 ± 0.78 72.11 ± 0.74 60.32 ± 0.82
LAE-Adapter 80.11 ± 0.54 79.07 ± 0.58 74.51 ± 0.57 61.94 ± 0.49
L2P 71.99 ± 0.19 71.65 ± 0.21 62.25 ± 0.45 59.25 ± 0.12
DualPrompt 72.54 ± 0.41 71.79 ± 0.16 62.54 ± 0.32 59.95 ± 0.15
CODA-Prompt 75.21 ± 0.56 75.03 ± 0.48 65.40 ± 0.65 61.25 ± 0.52
S-Prompt 75.24 ± 0.14 74.68 ± 0.12 63.21 ± 0.31 60.21 ± 0.11
Hide-Prompt 77.25 ± 0.31 76.45 ± 0.13 72.21 ± 0.26 63.99 ± 0.14
AdaPrefix 81.95 ± 0.82 83.13 ± 0.46 79.95 ± 0.14 64.31 ± 0.35
AdaPrefix++ 84.39 ± 0.64 84.26 ± 0.19 79.81 ± 0.21 67.80 ± 0.31

Table 8. We provide Average Accuracy over tasks for different task orders for AdaPrefix++ on ImageNet-R, with ViT-B backbone

Different Orders Order 1 Order 2 Order 3 Order 4 Order 5 Average

TIL 89.63 89.90 89.27 89.25 89.79 89.57
CIL 84.57 84.62 83.39 83.68 83.94 84.04

Table 9. This table provides results of the ImageNet-R dataset on ViT-Base architecture with varying numbers of classes on different tasks.
We provide test set accuracy for each of the tasks after being trained completely over the sequence of tasks.

Different Tasks 10 Cls 20 Cls 30 Cls 20 Cls 10 Cls 10 Cls AVG

ImageNet-R

TIL Hide-Prompt 90.12 83.54 83.12 86.47 87.75 83.12 85.69
AdaPrefix++ 90.23 83.94 85.32 86.71 87.26 84.32 86.30

CIL Hide-Prompt 80.82 71.35 71.58 79.54 80.14 80.10 77.26
AdaPrefix++ 87.82 75.97 76.65 83.54 83.64 82.94 81.76

F.4. 5-Datasets

The five datasets [11] include CIFAR10, SVHN, FashionMNIST, MNIST, and notMNIST datasets, each provided as an
incremental task. This dataset setup provides us with a more robust understanding of the impact of different tasks on our
approaches. Tab. 10 presents results for average accuracy over all tasks for different baselines and our methods. Tab. 11
provides results for five different task orders for these five datasets.

Table 10. Average Accuracy (↑) of all the baselines, along with our approaches, on 5-datasets is provided in this table.

Methods ViT-L ViT-B DeiT-S DeiT-T

Task Incremental Learning (TIL)

FT-seq-frozen 44.44 ± 0.85 44.12 ± 0.75 35.12 ± 0.94 29.56 ± 0.63
EWC 46.23 ± 0.25 45.21 ± 0.45 36.21 ± 0.54 30.25 ± 0.53
ER 69.12 ±0.45 68.1 ± 0.25 62.27 ± 0.56 58.10 ± 0.29
Adapter 95.11 ± 0.32 94.81 ± 0.77 89.17 ± 0.68 84.61 ± 0.12
LAE-Prefix 89.52 ± 0.65 88.27 ± 0.79 78.71 ± 0.81 72.65 ± 0.75
LAE-Adapter 94.89 ± 0.19 93.75 ± 0.22 87.99 ± 0.09 85.41 ± 0.12
L2P 91.48 ± 0.11 90.23 ± 0.18 82.14 ± 0.12 78.56 ± 0.15
DualPrompt 91.52 ± 0.15 90.24 ± 0.16 83.11 ± 0.15 78.35 ± 0.14
CODA-Prompt 93.15 ± 0.25 92.59 ± 0.59 84.21 ± 0.69 79.28 ± 0.95
S-Prompt 93.65 ± 0.16 93.21 ± 0.14 86.24 ± 0.15 80.41 ± 0.15
Hide-Prompt 95.90 ± 0.18 95.20 ± 0.19 91.58 ± 0.11 85.01 ± 0.14

AdaPrefix 95.24 ± 0.13 94.90 ± 0.21 91.58 ± 0.25 85.10 ± 0.14
AdaPrefix++ 95.28 ± 0.15 94.76 ± 0.32 90.52 ± 0.15 85.28 ±0.32

Class Incremental Learning (CIL)

FT-seq-frozen 13.01 ± 0.59 12.15 ± 0.77 10.89 ± 0.49 10.01 ± 0.99
EWC 33.59 ± 0.29 33.04 ± 0.77 30.41 ± 0.54 25.61 ± 0.12
ER 50.12 ± 0.38 48.21 ± 0.56 45.23 ± 0.63 43.02 ± 0.56
Adapter 88.45 ± 0.12 88.01 ± 0.17 85.25 ± 0.19 80.99 ± 0.13
LAE-Prefix 86.95 ± 0.29 85.49 ± 0.21 76.25 ± 0.27 70.55 ± 0.22

LAE-Adapter 89.01 ± 0.29 88.17 ± 0.22 86.55 ± 0.34 81.25 ± 0.37
L2P 84.17 ± 0.11 83.06 ± 0.12 78.28 ± 0.11 76.21 ± 0.15
DualPrompt 86.90 ± 0.12 86.60 ± 0.13 79.26 ± 0.15 77.21 ± 0.15
CODA-Prompt 88.90 ± 0.37 86.94 ± 0.48 81.11 ± 0.65 79.64 ± 0.49
S-Prompt 89.11 ± 0.12 88.81 ± 0.19 85.21 ± 0.25 79.60 ± 0.13
Hide-Prompt 92.91 ± 0.16 92.61 ± 0.13 89.21 ± 0.13 81.20 ± 0.17

AdaPrefix 91.99 ± 0.19 91.94 ± 0.14 89.12 ± 0.19 81.21 ± 0.21
AdaPrefix++ 91.87 ± 0.13 91.40 ± 0.18 89.25 ± 0.11 81.10 ± 0.17

Table 11. We provide Average Accuracy over all tasks for different task orders for AdaPrefix++ on 5-datasets, with ViT-B backbone

Different Orders Order 1 Order 2 Order 3 Order 4 Order 5 Average

TIL 94.15 94.52 94.74 94.53 94.62 94.512
CIL 91.32 90.09 92.01 91.10 91.52 91.37

F.5. CDDB-Hard

The CDDB-Hard [6] dataset is related to continual deep fake detection. In this dataset, we are provided fake images
generated by different generative models and images from different generative models are considered from different domains.
CDDB-Hard contains images from Gaussian-GAN, BigGAN, WildDeepFakes, Whichface-Real and SAN. More details about
these are present in [6]. Tab. 12 compares our approach AdaPrefix++ with all the other baseline approaches in a DIL scenario
on the CDDB-Hard dataset. Tab. 13 provides results for five different task orders for the CDDB-Hard dataset.

Table 12. Average Accuracy Results (↑) on CDDB-Hard deep-fake detection dataset in a domain incremental setting (DIL)

Methods ViT-L ViT-B DeiT-S DeiT-T

EWC 51.10 ± 0.78 50.59 ± 0.88 40.25 ± 0.56 29.34 ± 0.98
ER 74.01 ± 0.69 73.90 ± 0.75 65.24 ± 0.46 51.24 ± 0.81
LAE-Adapter 75.11 ± 0.51 74.01 ± 0.45 69.24 ± 0.16 64.99 ± 0.31
L2P 62.10 ± 0.16 61.28 ± 0.21 56.47 ± 0.11 42.14 ± 0.24
DualPrompt 61.99 ± 0.21 61.39 ± 0.16 57.01 ± 0.17 42.11 ± 0.17
CODA-Prompt 66.14 ± 0.56 65.22 ± 0.54 59.14 ± 0.68 47.14 ± 0.78
S-Prompt 75.12 ± 0.19 74.51 ± 0.14 70.25 ± 0.19 63.10 ± 0.19
AdaPrefix++ 78.45 ± 0.13 77.06 ± 0.17 75.21 ± 0.27 67.12 ± 0.31

Table 13. We provide Average Accuracy over all tasks for different task orders for AdaPrefix++ on CDDB-Hard, with ViT-B backbone

Different Orders Order 1 Order 2 Order 3 Order 4 Order 5 Average

DIL 76.59 77.06 76.99 76.92 77.38 76.988

Table 14. In this table, we provide domain-wise average accuracy for S-Prompt [9] and our approach AdaPrefix++ (for TIL (with domain-
ids) and DIL (without domain-ids)). We provide results on a sequence of 8 domains taken for CDDB dataset [6] with ViT-Base as the
backbone.

gaugan biggan deepfake imle crn wild whichfaceisreal san AVG

S-Prompt 97.60 94.12 91.54 100.0 98.56 76.21 73.56 52.31 85.49
AdaPrefix++ (TIL) 98.90 95.00 94.08 100.0 99.53 77.56 80.00 56.67 87.71
AdaPrefix++ (DIL) 99.30 95.125 93.99 100.0 99.49 76.20 72.50 54.44 86.38

G. Experiments on NLP Datasets (CL Benchmarks)
In this section, we provide the results of our approach AdaPrefix and AdaPrefix++ on one of the popular Continual

Learning benchmarks in NLP, CL Benchmark. It contains 5 tasks: Yelp (sentiment analysis), AG News (topic classification),
Amazon (sentiment analysis), DBpedia (topic classification), and Yahoo (topic classification). All of these tasks use accuracy
as a metric. To reduce the computational cost, we further sampled 1000 samples per class for all datasets; since test sets are
not available for all datasets, we used validation sets as our test data across all the experiments and held our 500 samples
from training data as validation. All of these experiments are done on the T5-Small model. Tab. 15 provides results for all

these tasks on our approach and a few baselines. From this table, we can see that our approach also works well for NLP tasks.
We can also see that AdaPrefix works better than another approach, and AdaPrefix++ holds on to that accuracy even with a
reduction in the number of parameters.

Table 15

CL Benchmark Average
Yelp Amazon DBPedia Yahoo AG News

EWC 27.71 27.52 25.38 15.97 47.97 31.00
Prefix 45.60 33.52 96.51 69.76 86.20 66.00

AdaPrefix 49.84 41.60 97.06 71.20 88.00 70.00
Hnet+Prefix 47.52 37.71 96.18 70.11 85.80 67.00

AdaPrefix++ 50.05 41.09 96.89 71.64 88.03 70.00

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009

IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, 2009. 8
[2] Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A unified continual learning

framework with general parameter-efficient tuning. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 11483–11493, 2023. 3

[3] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified view of parameter-efficient
transfer learning. In International Conference on Learning Representations, 2022. 3

[4] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli,
Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of out-of-distribution
generalization. ICCV, 2021. 8

[5] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. 7
[6] Chuqiao Li, Zhiwu Huang, Danda Pani Paudel, Yabin Wang, Mohamad Shahbazi, Xiaopeng Hong, and Luc Van Gool. A continual

deepfake detection benchmark: Dataset, methods, and essentials. In Winter Conference on Applications of Computer Vision (WACV),
2023. 10

[7] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar Panda,
Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed attention-based prompting for rehearsal-free continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11909–11919, 2023. 3

[8] Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical decomposition of prompt-based
continual learning: Rethinking obscured sub-optimality. Advances in Neural Information Processing Systems, 36, 2024. 3

[9] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers: An occam’s razor for domain
incremental learning. Advances in Neural Information Processing Systems, 35:5682–5695, 2022. 3, 10

[10] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer
Dy, et al. Dualprompt: Complementary prompting for rehearsal-free continual learning. In European Conference on Computer Vision,
pages 631–648. Springer, 2022. 3

[11] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas
Pfister. Learning to prompt for continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 139–149, 2022. 3, 9

	. Algorithms
	. Implementation Details
	. Backbone PLMs
	Transformations in the Transformer Block of PLMs

	. Architecture Details
	AdaPrefix
	AdaPrefix++
	Other Baselines

	. Optimization Details

	. Different Layer Embeddings
	. Different Layer Importance
	. Combination of Adapter and Prefixes Hyperparameters
	. Results
	. Computational Overheads
	. Split-CIFAR100
	. Split-ImageNet-R
	. 5-Datasets
	. CDDB-Hard

	. Experiments on NLP Datasets (CL Benchmarks)

