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Supplementary Material

In this supplementary material, we provide additional
implementation, training, and inference details about our
pipeline in Sec. 1. We include ablations for the vertex de-
tection network of the Pix2Poly architecture in Sec. 2. We
report quantitative comparisons on the AICrowd Mapping
Challenge dataset [11] in Sec. 3. We also report quantita-
tive comparisons on the Massachusetts Roads dataset [10],
INRIA (170) dataset [9] and the AICrowd Mapping Chal-
lenge small validation set [11] in Sec. 4 using the evalua-
tion script provided by the authors of TopDiG [17]. We also
demonstrate the failure cases of Pix2Poly in Sec. 5. Finally,
we report additional quantitative results and qualitative ex-
amples of polygonal building footprints and road networks
predicted by Pix2Poly on all datasets in Sec. 6.

1. Miscellaneous training and inference details
1.1. Implementation Details

All images were resized to 224×224 before being passed
to the network. We use the small variant of the standard vi-
sion transformer, ViT [2], with a patch size of 8 as the back-
bone in all of our experiments. The input image is divided
into 8 × 8 patches and the latent dimension of each patch
was set to 256. For the decoder, we employ a transformer
with 6 decoder layers and 8 heads per layer. Also, all GT
sequence tokens (start, end, pad, and vertex tokens) are em-
bedded using a learnable linear embedding layer. For the
optimal matching network, we employ two MLPs for pre-
dicting clockwise and counter-clockwise permutation ma-
trices. During training, we compute the permutation ma-
trix from the raw logits predicted by the optimal matching
network using 100 Sinkhorn iterations. During inference,
we compute the exact assignment matrix from the logit val-
ues using the Hungarian algorithm. Based on our analy-
sis, the maximum number of building corners (Nv) in an
image is set to 192 for both the INRIA [9] and Spacenet
datasets [3]. Nv was set to 256 for the AICrowd dataset
[11], 144 for the WHU Buildings [5] dataset, and 96 for the

Massachusetts Roads dataset [10]. We employ the AdamW
optimizer [8] with a learning rate of 4 × 10−4 and weight
decay of 1×10−4. We use weights λs = 1.0 and λp = 10.0
for the losses. In our experiments, a single forward pass on
an NVIDIA RTX A5000 GPU and an AMD EPYC 7313
processor takes ∼ 18.2ms per image.

1.2. Training Details

Augmentations: Our training setup uses extensive
geometric and radiometric augmentations to ensure high-
quality polygon prediction. For radiometric augmentations,
we use random brightness/contrast adjustments, color
jittering, RGB shifts, grayscale conversions, and the
addition of Gaussian noise. We also use extensive random
rotations with a probability of 0.8. The combination of
these augmentations provided the best results among which
the rotation augmentations provided the most increase in
evaluation performance.

End-to-end Gradient Flow: The Vertex Sequence De-
tector of Pix2Poly predicts a sequence of vertex tokens as
class probabilities over the vocabulary defined by the tok-
enizer. Therefore, to ensure end-to-end gradient flow be-
tween the predicted vertex sequence and the subsequent op-
timal matching step, we directly pass the penultimate de-
coder vertex features (before applying softmax) to the Op-
timal Matching Network. These vertex features of shape
Nv × d are self-repeated to construct a self-attention matrix
of shape Nv×Nv×d, which in turn is passed to the Optimal
Matching Network to predict the binary permutation matrix
of shape Nv ×Nv .

Here, Nv is the maximum number of vertices per image
and d is the feature dimension in the transformer decoder
of the Vertex Sequence Detector.

Ordering of Predicted Vertices: In direct polygon pre-
diction methods such as Polyworld [21] and TopDiG [17],
the implicit ordering of the ground truth vertices is lost dur-
ing the non-differentiable non-max suppression step. To
overcome this, Polyworld [21] employs a vertex sorting step
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to restore the ground truth vertex ordering so that the pre-
dicted array of vertices is in correspondence with the pre-
dicted permutation matrix. TopDiG [17] on the other hand,
generates GT permutation matrics on-the-fly so that they are
in correspondence with the predicted vertex array.

In contrast, Pix2Poly does not need any such intermedi-
ate step since there is no loss in the implicit ordering of the
vertices. Due to the end-to-end gradient flow in Pix2Poly,
the vertex sequence detector learns to predict the vertices
in the right order as imposed by the ground truth sequence
of vertices. This helps in reducing the overhead introduced
by any intermediate sorting steps.

Handling Pad Tokens: Pad tokens are treated as
self-connected vertices during the optimal matching step.
Therefore, following [21], rows corresponding to pad ver-
tices are assigned ‘1’ in the binary GT permutation matrix
diagonal during training and discarded as self-connected
vertices during inference.

1.3. Inference Details

Patched Inference: Since Pix2Poly is trained with
backbones with a fixed input size, we adopt a patched in-
ference strategy for aerial image tiles spanning a much
larger area on the ground. We patch large aerial images
(eg. 5000 × 5000 tiles of the test split of INRIA(155)
[9] dataset) into 224 × 224 patches with a 10% overlap
with adjacent patches. These patches are passed as in-
puts to Pix2Poly and the resulting building footprint poly-
gons are translated to their corresponding locations in the
5000 × 5000 tile. The redundant polygons in the overlap-
ping regions are simply merged with a unary union opera-
tion. In the case of buildings with inner yards (i.e., polygons
with holes), we treat overlapping polygons that are entirely
contained within a larger polygon as an inner hole of that
polygon. This strategy is followed by competing methods
as well [14, 17, 18, 21, 22]. Besides this patching strategy,
we do not perform any test-time augmentations such as ro-
tations, flip, crops, etc. for the patch predictions that are
commonly adopted by competing methods. All polygons in
a patch are obtained in a single pass autoregressively. Due
to Pix2Poly’s accurate predictions, we can observe strong
consistency of polygon predictions in the overlap regions
resulting in high-quality building polygons for large aerial
image tiles as shown in Figs. 3 to 7.

2. Vertex Sequence Detector Ablations
Since the sequence detection approach for vertex detec-

tion is our primary contribution, we ablate the proposed
Vertex Sequence Detector to demonstrate its effectiveness
in generating highly accurate building polygons without
the need for the computationally expensive regularization
losses, differentiable rasterizer, topology concentrated node

detectors in competing methods [17, 21]. To effectively
demonstrate this, we design a baseline that is identical to
Pix2Poly except for the vertex detection step. For vertex de-
tection, we replace the sequence decoder of Pix2Poly with
the mask decoder approach of PolyWorld [21], TopDiG [17]
and UniVecMapper [18]. We predict a vertex heatmap and
use a non-differentiable non-max suppression layer to ex-
tract the vertex coordinates. We also use the vertex sorting
step described in [21] to ensure correspondence with the
ground truth permutation matrix. We report the quantita-
tive comparison of this baseline with the proposed Pix2Poly
with the vertex sequence detector in Tab. 1, from which it
is evident that Pix2Poly can outperform the baseline and
generate high-quality building polygon predictions without
any complex regularization modules. We further demon-
strate this via qualitative comparisons of building polygons
between the baseline and Pix2Poly in Fig. 1.

In addition to the ablation for the vertex sequence de-
tector, we observed that the patch size of the backbone vi-
sion transformer encoder also had a significant impact on
the performance of the Vertex Sequence Detector. Using a
smaller patch size in the backbone encoder resulted in sig-
nificant improvement in performance as shown in Tab. 2.
Therefore, we decided to use the ViT Small variant with a
patch size of 8 as the encoder backbone.

3. Quantitative Comparison - AICrowd Map-
ping Challenge Dataset

In this section, we report the quantitative comparisons
on the official validation split of the AICrowd Mapping
Challenge dataset [11]. Although this dataset is a popu-
lar choice for benchmarking building footprint extraction
methods [4, 6, 14, 17, 21, 22] we wish to reiterate the nu-
merous issues of data leakage and excessive duplication
recently discovered in this dataset [1] and hence decided
against including comparisons on this dataset in the main
paper. We still report our performance on this dataset in
Tabs. 3 and 4 for the sake of complete comparisons.

4. Quantitative Comparisons with TopDiG [17]
and UniVecMapper [18]

To compare the performance of the proposed Pix2Poly
with TopDiG [17] and UniVecMapper [18], we used the
evaluation script provided by the authors of TopDiG. How-
ever, we realized that the authors were computing a multi-
class confusion matrix and averaging across both the build-
ings(or roads) and background classes for the mask and
topology metrics used in their paper. This deviates from
the standard convention of reporting only on building class
IoU followed by previous methods [4, 14, 21, 22] and by
us in the main paper. Therefore, we removed these results
from the main paper and moved them to the supplementary



Method Desc IoU ↑ C-IoU ↑ N-Ratio = 1 MTA ↓ PoLiS ↓ IoUtopo ↑ F1topo PAtopo ↑
Pix2Poly (baseline) Vertex Segmentation + NMS 80.52 72.89 0.919 34.11◦ 1.751 58.13 72.39 93.49
Pix2Poly (ours) Vertex Sequence Detection 81.81 75.05 1.041 33.40◦ 1.717 60.31 74.20 93.80

Table 1. Ablation results for the Vertex Sequence Detector: Polygonal Footprint Quality metrics. IoU & additional metrics assessing
the quality of building footprints extracted from the Spacenet Vegas dataset’s val split. Bold indicates the best scores.

Figure 1. Qualitative comparisons. Examples of predicted building polygons from the INRIA test set. We compare between Pix2Poly
(baseline) in the top row and Pix2Poly (ours) in the bottom row. The sequence prediction approach for vertex detection enables Pix2Poly
to predict accurate and high-quality building polygons without the use of complex regularization losses, a differentiable rasterizer, and a
topology feature learning module employed in competing methods. Zoom in for a better view.

Method Backbone Patch Size IoU ↑ C-IoU ↑ MTA ↓ PoLiS ↓

Pix2Poly 16 x 16 71.06 62.79 35.62◦ 2.695
8 x 8 75.06 67.27 35.24◦ 2.261

Table 2. Polygonal Footprint Quality results. Comparison of
IoU and other polygon quality metrics from the ablation experi-
ments for the ViT backbone patch size, performed on the INRIA
dataset’s validation split. Bold indicates the better-performing
configuration.

in Tab. 5 to avoid ambiguity. We also report the mask and
topology scores computed on the building/road class as per
the standard convention in green italics in Tab. 5.

5. Failure Cases

In Fig. 2, we illustrate some examples of failure cases
of Pix2Poly from the Spacenet Vegas dataset’s validation
split. It can be seen that the following are the most common
causes of failure:

• Partially or fully missing buildings in the predictions.

• Incorrect vertex connections learned by the permuta-
tion matrix result in polygons with topological errors.

• Misalignment between the ground truth and predicted
polygons.

6. Additional Results

In this section, we demonstrate additional quantitative
results and qualitative examples of predictions made by
Pix2Poly from the various datasets described in the main
paper in Tab. 6 and Figs. 3 to 7.

While we compare Pix2Poly with competing methods
by training and testing on 224 × 224 patches of the IN-
RIA(155) dataset, it should be noted that some methods
provide their pre-trained checkpoints. In particular, FFL [4]
and HiSup [14] provide pre-trained weights for their mod-
els after training on 512 × 512 images of the INRIA(155)
dataset. HiT [19], while not providing any code or pre-
trained weights, also reports metrics on 512×512 of the IN-
RIA(155) dataset. Therefore, for the sake of complete com-
parisons, we also evaluate Pix2Poly on 512 × 512 patches
of the INRIA(155) dataset using the patched inference strat-
egy described in Sec. 1.3. The results of these comparisons
are reported in Tab. 6.



Method AP ↑ AP50 ↑ AP75 ↑ APS ↑ APM ↑ APL ↑ AR ↑ ARS ↑ ARM ↑ ARL ↑
PolyMapper [6] 55.7 86.0 65.1 30.7 68.5 58.4 62.1 39.4 75.6 75.4
FFL (ACM poly) [4] 61.3 87.4 70.6 33.9 75.1 83.1 64.9 41.2 78.7 85.9
PolyWorld [21] 63.3 88.6 70.5 37.2 83.6 87.7 75.4 52.5 88.7 95.2
BuildMapper [13] 63.9 90.1 75.0 n/a n/a n/a n/a n/a n/a n/a
Re:PolyWorld [22] 67.2 89.8 75.8 42.9 85.3 89.4 78.6 58.3 90.3 96.2
HiSup [14] 79.4 92.7 85.3 55.4 92.0 96.5 81.5 60.1 94.1 97.8
Pix2Poly (ours) 79.6 91.6 85.2 61.4 91.9 91.7 87.7 73.6 96.0 97.5

Table 3. Quantitative results. The MS-COCO AP/AR metrics from experiments on the AICrowd dataset’s official validation split
containing 60,317 images. Bold and underlined scores indicate best and second-best scores respectively. Pix2Poly matches HiSup [14]
on average precision scores and outperforms on average recall scores. From the APS and ARS scores, it is evident that Pix2Poly is
significantly better at detecting smaller building objects in the dataset.

Method IoU ↑ C-IoU ↑ N-Ratio = 1 MTA ↓ PoLiS ↓ IoUtopo ↑ F1topo PAtopo ↑
FFL (ACM poly) [4] 84.10 73.70 n/a 33.5◦ 3.454 n/a n/a n/a
PolyWorld [21] 91.24 88.39 0.945 32.9◦ 0.962 76.75 86.61 97.04
Re:PolyWorld [22] 92.20 89.70 n/a 31.9◦ n/a n/a n/a n/a
HiSup [14] 94.27 89.67 1.016 31.9◦ 0.726 84.08 91.14 98.05
Pix2Poly (ours) 95.03 89.85 1.111 23.1◦ 0.479 89.05 93.75 98.62

Table 4. Polygonal Footprint Quality metrics. IoU & additional metrics assessing the quality of building footprints extracted from the
AICrowd dataset’s val split of 60,317 images. Bold & underlined scores indicate best & 2nd-best scores respectively.

Dataset Method Class PAmask ↑ F1mask ↑ IoUmask ↑ PAtopo ↑ F1topo ↑ IoU topo ↑

Inria (170) [9]

Curve-GCN [7]

Building & background

87.00 84.00 75.00 93.00 62.00 55.00
DeepSnake [12] 93.00 86.00 79.00 93.00 73.00 64.00
E2EC [20] 88.46 70.85 63.64 92.69 65.83 58.61
FFL [4] 92.00 85.00 77.00 92.00 68.00 59.00
PolyWorld [21] 90.82 83.54 73.41 92.92 73.60 63.47
BuildMapper [13] n/a n/a 63.64 n/a n/a 58.61
TopDiG [17] 94.70 91.32 84.56 93.88 78.47 68.39
UniVecMapper [18] n/a n/a 85.15 n/a n/a 69.77
Pix2Poly (ours) 95.78 92.39 87.33 94.35 86.51 78.58
Pix2Poly (ours) Building only 95.78 87.80 80.40 94.35 76.46 63.67

AICrowd [11]

E2EC [20]

Building & background

95.62 92.11 86.72 93.70 78.67 69.13
PolyWorld [21] 93.67 90.29 82.89 93.21 77.71 67.43
TopDiG [17] 96.45 94.77 90.23 94.51 82.20 72.51
Pix2Poly (ours) 98.87 98.05 96.54 98.54 96.23 93.41
Pix2Poly (ours) Building only 98.87 96.92 94.65 98.54 93.30 88.49

Massachusetts Roads [10]

Enhanced-iCurb [16]

Roads & background

- - - 89.00 68.00 58.00
RNGDet++ [15] - - - n/a n/a 50.54
PolyWorld [21] - - - 94.28 76.56 66.59
TopDiG [17] - - - 95.16 80.33 70.66
UniVecMapper [18] - - - n/a n/a 75.87
Pix2Poly (ours) - - - 97.51 85.74 77.52
Pix2Poly (ours) Roads only - - - 97.51 72.80 57.64

Table 5. Quantitative results. Mask and Topology quality metrics reported on the INRIA (170), AICrowd (small val set), and Mas-
sachusetts Roads datasets. Pix2Poly consistently outperforms SOTA methods on the quality of building and road graphs. Bold and
underlined scores indicate best and second-best scores respectively. Green italicized scores indicate metrics computed on the building/road
class using the standard convention.
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Figure 3. Qualitative results. Qualitative examples of extruded building polygons from the INRIA (150) dataset’s official test split.
Pix2Poly can predict high-quality building footprints that are immediately usable for 3D reconstruction.



Figure 4. Qualitative results. Qualitative examples of extruded building polygons from the INRIA (150) dataset’s official test split.
Pix2Poly can predict high-quality building footprints that are immediately usable for 3D reconstruction.



Figure 5. Qualitative results. Additional qualitative examples of building predictions from the Spacenet Vegas dataset’s validation split.



Figure 6. Qualitative results. Additional qualitative examples of building predictions from the INRIA (150) dataset’s validation split.



Figure 7. Qualitative results. Additional qualitative examples of road network predictions from the Massachusetts Roads dataset’s test
split.


