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1. Appendix
In Section 1.1, we show additional results for joint layer-

timestep analysis to show further evidence for how certain
attributes can be disentangled when both layer and timestep
dimension are considered jointly, which otherwise can not
be disentangled across a single dimension (as in P+ [11]
and ProSpect [13]). In Section 1.2, we show quantitative
analysis results for style and object attributes that confirm
the layer and timestep partitioning of Section 3.2 in the main
paper. In Section 1.3, we show more qualitative results for
comparing MATTE with baselines. Here we also explain in
detail how the prompt conditionings for the baselines P+ and
ProSpect are computed. In Section 1.4, we talk about the
implementation details and the images used for evaluation.
In Section 1.5, we provide more details on the quantitative
evaluation setup followed for reporting the results comparing
MATTE with baselines in Table 2 in the main paper. Finally,
we conclude with some discussion on limitations of our
method in Section 1.7.

1.1. Additional Layer-timestep Analysis

As discussed in the main paper, attributes like color and
layout that are captured along the same timesteps (from
Prospect [13]) can be disentangled along the layer dimension.
Similarly, geometric attributes like object and layout
that are captured along the same layers (from P+ [11]) can
be disentangled along the timestep dimension. We show
additional qualitative results to demonstrate the conclusions
stated above.

Consider Figure 1 for an example on layout-color disen-
tanglement using joint layer-timestep prompt conditionings.
In Figure 1(a), (b) and (c), one can note that we get a blue
ball despite the color being specified as red in the coarse
layers. In Figure 1(a) and (b), we get a ball placed on a
table and under a table respectively as expected, be-
cause the corresponding layout conditionings were given as
input to all U-Net [10] layers. In Figure 1(c), we notice that
we get a ball on a table despite specifying under a

table in the moderate layers. This clearly indicates that
the coarse layers are dominantly responsible for determin-
ing the layout. To summarise, this example shows that while
color and layout are captured along the same timesteps,
they can be disentangled along the layer dimension (L3 - L5

& L10 - L13 for color and L6 - L9 for layout).
Similarly, consider the example in Figure 2, where we

show object and layout that are captured along the
same layers can be disentangled along the timestep dimen-
sion. Here, based on the final generated image (a standing
cow), one can note that the text conditions corresponding to
the object cowwere specified in stage t2, t3 and had the most
impact on the final image. For instance, despite the input
cat in t1 stage, the final image has a cow. Similarly, despite
specifying the layout sitting in stages t2, t3, the final
generation only respected standing that was provided in
stage t1. This shows that while object and layout are
captured along the same layers, they can be disentangled
along the timestep dimension (t2, t3 for object and t1 for
layout).

Before we move on to the next example, we had sum-
marised from our analysis in the main paper that fine layers
(L1 - L2 & L14 - L16) and the stage t4 have no impact on any
of the four attributes. Color and style are both captured
in the initial denoising stages (t1, t2) and across moderate
U-Net layers (L3 - L5 & L10 - L13). Object semantics
are captured along the middle denoising stages (t2, t3) and
across the coarse U-Net layers (L6 - L9). Finally, layout
is captured in the very initial denoising stage (t1) across
coarse layers (L6 - L9).

On that note, we show another example in Figure 3, simi-
lar to the joint multi-prompt conditioning example presented
in Figure 5 in the main paper, which demonstrates the prop-
erties summarised above. For the final generated image (a
blue ball placed on a table), one can note that the textual
conditionings corresponding to each of key attributes in the
prompt (blue, ball, and on the table) were speci-
fied only across a subset of layers and only along specific
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timesteps. These observations are consistent with the analy-
sis we summarised for each of the attributes. For instance,
, despite specifying white in L1 - L2 & L14 - L16 layers,
and color red in (L6 - L9) layers, we still see a blue col-
ored ball based on the color specified in moderate (L3 - L5

& L10 - L13) layers. Similarly, the layout is captured in the
initial stages and across the coarse set of layers. We also
show per-layer attention maps across denoising timesteps
in Figure 4 which confirms that layout is predominantly
captured in layers L6, L8, and L9.

1.2. Quantitative Layer-timestep Analysis

We continue the discussion on joint layer-timestep quan-
titative analysis as in Section 3.2 in the main paper. The
style attribute follows the same patterns as that of the
color as shown in the main paper. We discuss the object
attribute in detail, the results for which are plotted in Fig-
ure 5. Consider a particular y-label in the plot shown for p1
(recall that as we move from bottom to top along the y-axis,
an increasing number of layers starting from the coarse ones
are replaced with p2 conditioning instead of p1). One can ob-
serve that the drop in similarity scores is maximum initially
when the first few layers from the coarse set are removed
(along y-axis). On the other hand, when we consider the
timestep conditioning effect, the scores in the initial stages
of replacement are unaffected (p1/p2 replaced by p3/p4
progressively) as can be noted from the width of the hori-
zontal bars. But after a few timestep stages, the width of the
horizontal plots start reducing, thereby confirming that the
object attribute is captured in the middle denoising stages.

1.3. Additional Qualitative Results and Setup De-
tails

We show additional results comparing MATTE with
the closest baselines ProSpect [13] and P+ [11]. We first
explain how we generate images using P+ and ProSpect
given a prompt with an example. Consider the example
shown in column 1 in Figure 6. The goal here is to generate
images of a dog in oil painting style following
the color properties of the reference image. The first
step here is to run the inversion algorithms of P+ and
ProSpect for the reference image, and get a set of textual
conditionings < xi > where i = 1, · · · , 16 for P+, and
< yj > where j = 1, · · · , 10 for ProSpect. Next, depending
upon the attributes we want to transfer from the reference
image (color here), we retain the textual conditionings
learned during inversion in P+ and Prospect as part of
the final conditionings used as input along the 16 layers
and 10 timestep stages respectively. The decision of
retaining conditionings is made on the basis of which set
of timesteps/layers are important for capturing the attribute
of interest (color here). Since we know color is captured
across the shallow U-Net layers in P+, and across the initial

denoising stages in ProSpect, the prompt that goes as input
to P+ across the 16 U-Net layers is:
[< x1 > dog in oil painting style,
< x2 > dog in oil painting style,
< x3 > dog in oil painting style,
< x4 > dog in oil painting style,
< x5 > dog in oil painting style,
dog,
dog,
dog,
dog,
< x10 > dog in oil painting style,
< x11 > dog in oil painting style,
< x12 > dog in oil painting style,
< x13 > dog in oil painting style,
< x14 > dog in oil painting style,
< x15 > dog in oil painting style,
< x16 > dog in oil painting style].

Similarly, the prompt for ProSpect across the 10
denoinsing timestep stages is:
[< y1 > dog in oil painting style,
< y2 > dog in oil painting style,
< y3 > dog in oil painting style,
< y4 > dog in oil painting style,
dog in oil painting style,
dog in oil painting style,
dog in oil painting style,
dog in oil painting style,
dog in oil painting style,
dog in oil painting style].

We next discuss the results comparing MATTE with P+
and ProSpect in Figure 6. Consider the example in column
1. Here the goal is to generate a dog in oil painting
style while retaining only the color properties from the
reference image. We see that MATTE captures everthing
(dog, oil painting style and color attribute from reference im-
age) accurately. While in ProSpect, even though the colors
got transferred from the reference image, but it has gener-
ated dogs following the layout of the inkpot shown in the
reference image. This is because, as seen previously, layout
and color are captured across similar denoising timesteps,
hence disentangling the two is not possible in ProSpect (as
inversion in ProSpect is across timestep dimension only).
Similarly, for P+, we see that the generated dogs follow
the oil painting style but are unable to capture the color of
the inkpot. This again is because color and style are cap-
tured in same layers in P+, so either color and style both
get transferred together or none gets transferred. One can
make similar observations across the examples shown in
other columns too which clearly indicated that MATTE is
able to constrain the generation of images on attributes from
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Figure 1. Layout-Color disentanglement.
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Figure 2. Layout-Object disentanglement.

reference image in a disentangled fashion much better than
the closest baselines.

We also show additional comparison results of MATTE
with both diffusion-specific [2, 7, 12] as well as conventional
baselines [8] for style transfer in Figure 7 where one can
observe the MATTE substantially outperforms the baselines.

1.4. Implementation Details and Dataset

We follow the same set of styles, objects and colors as
described in P+ [11] for all our evaluations and trainings.

Specifically, during MATTE inversion technique (Section
3.2 in the main paper), the set of styles used to randomly
choose styles from was:
["oil painting", "vector art", "pop art
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Figure 3. Multi-prompt conditioning across U-Net layers and denoising timesteps jointly.
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Figure 4. Cross-attention maps for analysing layout.

style",
"3D rendering", "impressionism picture",
"graffiti", "fuzzy",
"shiny", "bright", "fluffy", "sparkly",
"dull", "smooth",
"rough", "jagged", "striped",
"painting", "retro", "vintage",
"modern", "bohemian", "industrial",
"rustic", "classic",
"contemporary", "futuristic"]

For the quantitative evaluations in Section 4 in the main
paper, we use the following sets of objects, style and colors
(again from P+ [11]):

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

13

Prompt 1 - object

(a) Prompt 1

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

11

12

13

Prompt 2 - object

(b) Prompt 2

Figure 5. The figure demonstrates the similarity scores obtained
from our joint layer-timestep analysis for understanding which
layers/timesteps object is captured in. This is a combination across
all 13 layer conditionings for the analysis shown in in Figure 6 in
the main paper.
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Figure 6. Comparison of MATTE with recent state-of-the-art methods for reference-constrained text-to-image generation.

Objects = ["chair", "dog", "book",
"elephant", "guitar",
"pillow", "rabbit", "umbrella", "yacht",
"house", "cube",
"sphere", "car’"]

Colors = ["black", "blue", "brown",
"gray", "green",
"orange", "pink", "purple", "red",
"white", "yellow"]

Styles = ["watercolor", "oil painting",
"vector art", "pop art style", "3D
rendering", "impressionism picture",
"graffiti"]

Finally, we show the images used for different evaluation
setups in Figure 8.

Note that all our experiments were conducted using a
single A10G GPU with a batch size of 2.

1.5. Quantitative Evaluation Setup Details

We presented an evaluation to quantify the disentangle-
ment of different pairs of attributes in the main paper in
Table 2, Section 4. Here, we explain the details of how
we compute the CLIP Image-text similarities reported in

the paper. We use the set of images shown in Figure 8
and the set of attributes discussed in Section 1.4. For each
reference image, our goal was to evaluate the inversion
techniques in aspects of (i) preserving/transferring an
attribute from the reference image and (ii) generating
images following attributes mentioned in the text prompt.
We considered 6 unique pairs of attributes for this com-
parison namely layout-color, layout-object,
layout-style, color-object, color-style
and object-style. Consider the case of
color-object disentanglement evaluation in the
context of reference image based attribute-aware text-to-
image generation. The attribute mentioned first (color
here) is the one to be transferred from the reference image,
whereas the latter (object here) comes from the text
prompt. For each of the baselines P+ and ProSpect, we
generate final prompt conditionings in the same fashion as
explained in Section 1.3 by retaining the textual condition-
ings responsible for capturing the attribute to be transferred
from reference image (color here). For the attribute that
comes from the text prompt (objects here), we iterate
over a set of different objects following the list of objects
mentioned in Section 1.4 and generate a set of 64 images for
each color-object pair. We then compute CLIP Image-text
similarities between the generated images and the ground
truth object used to generate those images. Similarly, we
also compute CLIP Image-text similarities between the
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Figure 7. Comparison of MATTE with recent state-of-the-art methods for style transfer.

generated images and the corresponding ground truth for the
attribute to be transferred from reference image wherever
possible, followed by an averaging of the two similarities
(for color in color-object case, ground truth colors are
extracted from the reference image using Color Thief [4]).
Similarly, these CLIP based Image-text similarities are
computed for other attribute pairs for MATTE and the
closest baselines P+ and ProSpect, results of which are
reported in Table 2 in the main paper.

1.6. User Study

We conduct a user study with the generated images where
we ask survey respondents to select which set of images
(among sets from three different methods, see Table 1) best
represents the input constraints. The user is presented with a
reference image, a text prompt, and a set of attributes from
the reference image that should ideally get transferred to the
final generated image (see Figure ?? for an example). From
Table 1, our method’s results are preferred by a majority of

Method Percentage

P+ [11] 12.2%
ProSpect [13] 13.2%

MATTE 74.6%

Table 1. Results from a user survey with 24 respondents.

the survey respondents, thus providing additional evidence
for the impact of our proposed inversion technique in con-
straining text-to-image generation on different attributes of
reference images in a disentangled fashion.

1.7. Limitations

In this Section, we briefly discuss a few limitations of
MATTE when seen in a constrained text-to-image generation
setup. Firstly, the optimization of the embeddings learned
for the four tokens namely < c >, < l >, < o > and
< s > during inversion is a slow process (MATTE converges



Figure 8. Images used for evaluation.

faster than TI [6], but is still slow), thereby posing a limita-
tion to its’ practical applicability. Secondly, since MATTE
doesn’t involve fine-tuning model weights, the final con-
strained text-to-image generation pipeline after MATTE in-
verts the reference image into disentangled tokens is limited
by the generation abilities of the base diffusion model. For
instance, omission of objects mentioned in the text prompt is
a known limitation of diffusion models [1, 3, 5, 9]. So, given
a prompt "a <c> colored cat playing with a
dog" (where < c > is extracted from a reference image
using MATTE) to the base diffusion model, MATTE will
ensure that the cat generated is < c > colored but MATTE
can not enforce the presence of a cat in the final generated
image. Moreover, since we are building on top of existing
text-to-image models, any potential fairness considerations
for these base models will flow to our method as well.
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