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1. Training Details
For multi-head vision transformers, the bottleneck di-

mension used is 1/4 multiplied by the channel dimension of
the embedding for the respective block of the Video Swin-
B. A smaller dimension size produces worse results, and a
larger size produces similar results. For EK100, we use a
slightly larger bottleneck dimension (3/8 times in place of
1/4) for the last block of the Video Swin-B. For prefix tun-
ing, the prefix channel dimension used is a minimum of 64
and 1/8 multiplied by the channel dimension of the embed-
ding for the respective block of the Video Swin-B. The bot-
tleneck dimension for the generation of the prefixes is 1/4
multiplied by the channel dimension of the prefix. Smaller
prefixes provide worse results. Larger prefixes make the
networks overfit very fast. The model starts overfitting after
5-6 epochs with a big prefix. Prefix tuning is a shortcut for
the network to force attention to focus on particular features
by learning fixed additional inputs to keys and values. This
allows it to easily learn patterns in the inputs or activations
of the training set and thus overfit.

For cross-attention, we use feature embeddings extracted
from side modalities. We use trill-distilled [4] for obtaining
audio features. Roughly 15 time steps of the audio features
correspond to 128 frames in the videos (we use a stride of 4
frames for our input and Video Swin-B takes 32 frames as
input). We use TV-L1 optical flow estimation and bnincep-
tion [2] is used for its feature extraction. The features corre-
sponding to each frame in the RGB video are taken, so the
input of the temporal dimension is the same as RGB videos.
Conv-1D is used for temporal pooling of all side modalities
as Video Swin-B divides each input embedding into voxels
and applies attention to each of them homogeneously. For
simplicity, we give context from the side modalities for the
whole input to every individual voxel. Also, we use per-
formers [1] for cross-attention to make it more efficient.

The cross-attention adapters are added to the first two
and last two layers of each block of Video Swin-B. For the
last layer of the last block, we use traditional cross-attention
by changing the input for the value to be the same as the key
and use the cross-attention adapters for late fusion in place
of modifying attention. This provides slightly better results
as the information from the other modalities passes further

along with the value.

For training, we use 8/16 Tesla V100 GPUs with a batch
size of 3 per GPU for adapters and 2 for full finetuning.
These are the largest batch sizes we can fit on one GPU for
each case. We train for varying numbers of epochs, stop-
ping if performance does not increase for 6 epochs. The
learning rate is modified according to the batch size. Video
Swin transformers use a batch size of 8 per GPU and a start-
ing learning rate of 0.0003. CM3T uses 0.0015 for batch
size of 2 and 0.0018 for batch size 3. The weight decay
is 0.05. Weight initialization for downscaling weights is
used as Kaiming initialization, zero initialization for up-
scaling. Rest weight initializations are either from the pre-
trained model or default initialization from PyTorch. We
use Video Swin-B pretrained on SSv2 dataset for experi-
ments on EK100 dataset. For the experiments on the other
datasets, we use the same model pretrained on Kinetics400
dataset. SSv2 is an egocentric dataset, similar to EK100 and
pretrained Video Swin-B uses a larger window size for it, so
we chose it for EK100. Kinetics400 is similar to the other
datasets, so we use it for experiments on the others.

2. Cross-attention adapters’ behaviour with
different modalities at different levels

We apply cross-attention to the first and last two layers
of each block in video swin transformers [3] (each block
has multiple stacked transformer encoders and each block
has different spatial resolutions for the patches being pro-
cessed). If the blocks have only two layers, we apply them
to both the layers. In this subsection, we study the im-
portance of cross-attention at different levels for different
modalities, by removing adapters from different blocks. Ta-
ble 1 shows the results. This can be used to prune the
architecture for specific modalities. We see that for audio
and transcript, later layers are more important, whereas for
optical flow, earlier layers are more important. Block 3 is
the biggest block and is needed for good results for all side
modalities.
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Table 1. Results for ablation study in section 2. The entries show
cross attention removed from a particular block, this is represented
by ”-” in the table. For example, ”CM3T - Block 1” represents
CM3T without cross-attention in Block 1. Also, block 1 is closest
to input and block 4 is the last block before classification head.

Method Performance
Audio(MSE)

UDIVA(CM3T) 0.69
UDIVA(CM3T - Block 1) 0.72
UDIVA(CM3T - Block 2) 0.73
UDIVA(CM3T - Block 3) 0.81
UDIVA(CM3T - Block 4) 0.78

Audio(Top-1 Accuracy)
EK100(CM3T) 48.2%
EK100(CM3T - Block 1) 47.8%
EK100(CM3T - Block 2) 47.5%
EK100(CM3T - Block 3) 46.4%
EK100(CM3T - Block 4) 47.1%

Transcript(MSE)
UDIVA(CM3T) 0.69
UDIVA(CM3T - Block 1) 0.70
UDIVA(CM3T - Block 2) 0.73
UDIVA(CM3T - Block 3) 0.82
UDIVA(CM3T - Block 4) 0.79

Optical Flow(Top-1 Accuracy)
EK100(CM3T) 48.2%
EK100(CM3T - Block 1) 45.3%
EK100(CM3T - Block 2) 45.8%
EK100(CM3T - Block 3) 44.2%
EK100(CM3T - Block 4) 46.6%

Table 2. Result for adding adapters to cross-attention adapters.

Method Performance
UDIVA(MSE)

CM3T 0.690
CM3T (with adapters added to CA) 0.689

3. Adding adapters to cross-attention adapters

Since modalities are repeated across tasks and datasets,
we see that training the entire cross-attention adapter mod-
ule is not necessary. We can simply add scalable parallel
adapters to the cross-attention modules. For this, the ini-
tial embedding is directly taken from the pretrained model
and not the multi-head vision adapters, rest stays the same.
Table 2 shows the results for this experiment. We train
cross-attention adapters for audio using EK100 and show
results for UDIVA with normal cross-attention adapters and
adapters added to cross-attention adapters.

Table 3. Ablation study results. a0 represents trainable scaling
factor. a1 represents changing activation function to ReLU.

Method Performance
EK-100 (Accuracy(%))

Scaled parallel adapters + PT 28.7
MHVA + PT 39.8
MHVA - a0 + PT 38.7
MHVA - a1 + PT 39.1

4. Ablation study: Our additions compared to
adapters in Adaptformer

Table 3 shows the results of this ablation study.
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