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1. Supplementary Material
We present supplementary material that enhances the un-

derstanding of our main paper through additional details
and in-depth qualitative analysis. This supplementary con-
tent is structured as follows:

• Numerical Solution Using Euler’s Method

• Exact Solutions of the ODE

• Gradient Derivations

• Error metric calculation

1.1. Numerical Solution Using Euler’s Method:

Euler’s method is a straightforward numerical technique
for solving ordinary differential equations (ODEs) with a
given initial value. It approximates the solution by itera-
tively advancing the solution over small time steps.

Problem Statement: Given the ODE:

τ
dh

dt
= −h+ f(x, h) + b (1)

we want to find the numerical solution for h(t) over time
using Euler’s method.

Steps for Solving the ODE:
1. Rewrite the ODE:

dh

dt
=

−h+ f(x, h) + b

τ
(2)

2. Discretize the Time Variable: Let’s discretize the
time domain into small time steps of size ∆t:

tn = n∆t (3)

where n is an integer index representing the time step.

3. Approximate the Derivative: The time derivative dh
dt

at time tn can be approximated using the forward differ-
ence:

dh

dt

∣∣∣∣
t=tn

≈ hn+1 − hn

∆t
(4)

4. Substitute the Approximation into the ODE: Sub-
stituting the forward difference approximation into the
ODE, we get:

hn+1 − hn

∆t
=

−hn + f(xn, hn) + b

τ
(5)

5. Solve for hn+1: Rearrange the equation to solve for
hn+1:

hn+1 = hn +∆t · −hn + f(xn, hn) + b

τ
(6)

6. Iterative Update Rule: This gives us the iterative
update rule for h:

hn+1 = hn +
∆t

τ
(−hn + f(xn, hn) + b) (7)

1.2. Exact Solutions of the ODE
Exact Solution Using Differential Calculus: For a sim-

plified case, where f(x, h) is a linear function of x and h,
the ODE can be solved exactly. Consider:

τ
dh

dt
= −h+Wihx+Whhh+ b (8)

Rewriting, we get:

dh

dt
= −h

τ
+

Wihx+Whhh+ b

τ
(9)

This can be solved using the integrating factor method.
Multiply both sides by et/τ :

1



et/τ
dh

dt
+

het/τ

τ
=

(Wihx+Whhh+ b)et/τ

τ
(10)

The left side is the derivative of het/τ :

d

dt

(
het/τ

)
=

(Wihx+Whhh+ b)et/τ

τ
(11)

Integrating both sides:

het/τ =

∫
(Wihx+Whhh+ b)et/τ

τ
dt (12)

Solving for h:

h(t) =

(∫
(Wihx+Whhh+ b)et/τ

τ
dt

)
e−t/τ (13)

1.3. Gradient Derivations

The iterative update of the hidden state hj is defined as:

h
(l)
t+∆t = h

(l)
t +

∆t

τ

(
− h

(l)
t

+ tanh
(

conv3d(X,Wih) + conv3d(h(l)
t ,Whh) + b

))
(14)

1.3.1 Gradient of Loss with respect to Wih

The gradient of the loss L with respect to Wih can be com-
puted as follows:

∂L
∂Wih

=

L−1∑
l=0

∂L
∂h

(l+1)
t

· ∂h
(l+1)
t

∂Wih
(15)

The term ∂hj+1

∂Wih
can be expanded using the chain rule:

∂h
(l+1)
t

∂Wih
=

∆t

τ
· diag

(
1− tanh2(

conv3d(X,Wih) + conv3d(h(l)
t ,Whh) + b

))
· ∂

∂Wih
conv3d(X,Wih)

(16)

Thus,

∂L
∂Wih

=

L−1∑
j=0

∂L
∂h

(l+1)
t

· ∆t

τ

· diag
(
1− tanh2 (conv3d(X,Wih)

+conv3d(h(l)
t ,Whh) + b

))
· ∂

∂Wih
conv3d(X,Wih)

(17)

1.3.2 Gradient of Loss with respect to Whh

Similarly, for the recurrent weights Whh:

∂L
∂Whh

=

L−1∑
l=0

∂L
∂h

(l+1)
t

· ∂h
(l+1)
t

∂Whh
(18)

Where:

∂h
(l+1)
t

∂Whh
=

∆t

τ
· diag

(
1− tanh2 (conv3d(X,Wih)

+conv3d(h(l)
t ,Whh) + b

))
· ∂

∂Whh
conv3d(h(l)

t ,Whh)

(19)

1.3.3 Gradient of Loss with respect to τ

For τ :
∂L
∂τ

=

L−1∑
l=0

∂L
∂h

(l+1)
t

· ∂h
(l+1)
t

∂τ
(20)

Where:

∂h
(l+1)
t

∂τ
= − ∆t

τ2

(
h
(l)
t − tanh (conv3d(X,Wih)

+conv3d(h(l)
t ,Whh) + b

))
(21)

1.3.4 Gradient of Loss with respect to b

Finally, for the bias term b:

∂L
∂b

=

L−1∑
l=0

∂L
∂h

(l+1)
t

· ∂h
(l+1)
t

∂b
(22)

Where:



∂h
(l+1)
t

∂b
=

∆t

τ
· diag

(
1− tanh2 (conv3d(X,Wih)

+conv3d(h(l)
t ,Whh) + b

))
(23)

1.4. Error metric calculation

We follow the metrics to calculate the measurement ac-
curacy.
Here ŷ = heart rate, y = ground truth, error e = ŷ − y

1.4.1 Pearson Correlation Coefficient (r)

The value of the Pearson correlation coefficient is between
-1 to +1.

Lrppg =
1
N

∑N
i=1 ŷiyi − 1

N

∑N
i=1 ŷi

1
N

∑N
i=1 yi√

1
N

∑N
i=1 ŷi

2 −
(

1
N

∑N
i=1 ŷi

)2√ 1
N

∑N
i=1 y2

i −
(

1
N

∑N
i=1 yi

)2
(24)

1.4.2 Mean Absolute Error (MAE)

MAE =

N∑
i=1

|ei|
N

(25)

1.4.3 Root Mean Squared Error (RMSE)

RMSE =

√√√√ N∑
i=1

e2i
N

(26)

1.4.4 Standard deviation (STD)

STD =

√√√√ 1

N

N∑
i=1

e2i −

(
1

N

N∑
i=1

ei

)2

(27)


