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Figure 8. Qualitative results of 4 mm and 8 mm axial super-resolution from Sec. 4.3 and Fig. 7.

A. Additional experimental results

We provide the more qualitative results from Sec. 4.3 of
the SR application and additional experiments and analy-
sis with the LV masks Furthermore, as aforementioned in
Secs. 1 and 2.2, we here suggest certain usage cases of spa-
tial control methods in medical images such as image trans-
lation and precise synthesis to elaborate on the answers to
the following questions: “why are conditional generation
approaches needed in the medical image domain?” and
“what are the applications of spatial control methods for
medical images?”.

A.1. Super-resolution

For better comparability between VCM and the other
methods for the super-resolution (SR) in Sec. 4.3 and Tab. 4,
we visualize the more qualitative results of all methods.

In the low sparsity of 4 mm SR, as LIIF-3D [2] signifi-
cantly outperforms in the metrics in Tab. 4, the model pro-
duces the most similar images with the ground truth. For
example, the image appearance of LIIF-3D has not only cor-
rect semantics in the brain structures (e.g., the lateral ven-
tricles, the skull and white matter), but also high-frequency
details such as brain folds (e.g., the gray matter). The op-
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timized outputs of InverseSR [17] illustrate comparable vi-
sual quality with that of VCM. Since VCM learns spatial
controls for the 4 mm SR task with only 50 training sam-
ples, the results are promising in both data and computa-
tional efficiency. However, compared to LIIF-3D, Invers-
eSR and our VCM show poor quality in the details of brain
MRI scans.

In the higher sparsity of 8 mm SR, only VCM produces
a normal brain MRI scan maintaining the shape of brain ar-
chitectures such as the skull and the lateral ventricles, skull,
and brain matters. The competitor in the 4 mm SR in both
qualitative and quantitative results of Tab. 4 and Fig. 8, In-
verseSR [17] shows some destroyed appearances in the gen-
erated output. In addition, LIIF-3D also creates an abnor-
mal image, failing to perform the 8 mm SR. On the other
hand, SynthSR [7], a pretrained model for brain MRI SR,
shows consistent results regardless of the degradation of the
input image. However, the method produces the poor metric
scores and the mispredicted outputs such as the skull thick-
ness and brain structure details.

A.2. Image translation

(a) Input T2 and FLAIR (b) Hyper-GAE (c) VCM (d) GT

Figure 9. Comparison of generated T1w brain MRI results be-
tween Hyper-GAE [18] and our VCM for Image-to-Image trans-
lation. Used input conditions are T2 and FLAIR MRI scans.

Using the intrinsic magnetic resonance properties of tis-
sues, we can acquire various MRI sequences such as T1, T2,
and FLAIR, each offering exclusive information. A com-
plete set of these sequences is ideal for an accurate diagno-
sis, but acquiring them in practice is often challenging due
to the extended scanning time. Consequently, many stud-
ies have focused on predicting missing sequences from the
available ones [18].

In the context of image to image translation tasks in med-
ical images, VCM can guide the diffusion process to synthe-
size the missing MRI sequence using the other sequences as
spatial controls. In this experiment, we used T2 and FLAIR

MRI scans as conditions to generate a translated T1w MRI
scan. VCM was trained with 50 training sets of T2, FLAIR,
and T1w brain MRI sequences.

As illustrated in Fig. 9, VCM synthesizes a T1w MRI
scan, reflecting detailed features such as folds from the T2
and FLAIR scans. Compared to HyperGAE [18], the state-
of-the-art 3D-based translation method, our VCM produces
clearer synthetic images leveraging the pretrained diffusion
model. In addition, due to the high computational cost of
3D medical images, many 3D-based deep learning archi-
tectures employ patch-based scheme, which are prone to
grid artifacts, as seen in the zoomed images of HyperGAE
method (Fig. 9 (b)). In contrast, our VCM is free from
grid artifacts, as it can handle the entire image even with
an enterprise-level GPU (e.g., 24GB VRAM).

A.3. Synthesis with precise semantics

(a) Input semantics (b) uncontrolled (c) VCM (d) Real data

Figure 10. Samples of T1w brain MRI scans for uncontrolled out-
put and controlled by our VCM with complex semantics.

As suggested in Sec. 1, the scarcity of available data
in medical images can be addressed using high-quality
synthetic data that are privacy-concern-free and precisely
match the anatomical composition of real patient data. To
generate these synthetic images, spatial control methods
with the semantics of real patients can be a solution while
also avoiding huge computational costs. To examine, we
train our VCM with segmentation masks more complicated
than those in Sec. 4.1. Specifically, we increase the num-
ber of semantics classes to include: 1) cerebrospinal fluid,
2) white matter, 3) gray matter, 4) all ventricles, 5) thala-
mus, caudate, putamen, and accumbens, 6) amygdala, 7)
hippocampus, and 8) brain stem.

We visualize the samples generated by (a) BrainLDM
[13] as uncontrolled and (b) controlled by our VCM with
the semantics in Figs. 10 and 11. With the given input
conditions, our VCM controls and generates the outputs of



(a) uncontrolled (b) VCM (c) Real data

Figure 11. Comparison of the semantics of generated images be-
tween uncontrolled output and controlled by our VCM.
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Figure 12. Spatially controlled output by VCM with the LV mask
condition. (a) The original image synthesized by BrainLDM has a
large displacement in terms of orientation with the given LV con-
dition. (b) the guided output by VCM.

T1w brain MRI, precisely close to the real data, which is
used to obtain the input semantics. Especially, not only the
global appearance of the MRI scans (see Fig. 10), but also
the generated semantic masks are highly homogeneous with
the real data and the given condition (see Fig. 11).

A.4. Further analysis of spatial controls

We further analyze spatial controls through our VCM
with lateral ventricle (LV) masks to generate T1w brain
MRI scans. Through the following experiments and the cor-
responding analysis, we aim to understand what spatial con-
trol methods learn and act in guiding the generation process

Large LV

Small LV

VCM
output

Figure 13. Examples of spatially controlled images by guiding
outliers with VCM.

of pretrained diffusion models. To acquire an uncontrolled
sample and a guided image with VCM, we sample both im-
ages copied from a single Gaussian noise. Subsequently,
only one noise is provided the spatial controls by VCM as
we illustrate in Fig. 3. Finally, the predicted noises are de-
coded by the BrainLDM decoder to obtain T1w brain MRI
scans.

Appearance correction with given spatial conditions.
Synthetic medical images require anatomical fidelity for
plausible image synthesis. In this experiment, we assess
whether VCM not only modifies the image based on given
conditions, but also appropriately adjusts the overall appear-
ance of the brain through orientation correction. Fig. 12
shows the samples generated by BrainLDM and VCM at
the top of BrainLDM, respectively. If VCM learns spatial
controls solely to create the LV in localized areas, the re-
sulting output may appear unnatural, for instance, moving
only the LV within the samples from BrainLDM. However,
our VCM properly adjusts the orientation of the entire brain
corresponding to the given LV mask, as well as accurately
guides the LV in the desired area. This correction of ori-
entation indicates that spatial control methods leverage the
capabilities of the pretrained models to generate the appro-
priate output within the brain image distribution.

Spatial controls on outliers. We investigate the influ-
ence and strength of spatial control methods by control-
ling outliers synthesized from BrainLDM. Fig. 13 shows
the samples from BrainLDM using large and small scalar
values for LV volume and the guided image by VCM with
LV mask. To make LV outlier images in the top and bottom
rows of Fig. 13, we input two extrapolating values of the
conditioning variables for small and large LV volumes. Al-
though the LVs of the synthesized images from BrainLDM
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Figure 14. Visualization of spatial control guidance by VCM using the LV mask in each step of the diffusion process.
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Figure 15. Synthetic image from an abnormal condition of the LV.

have significant differences with the given condition, the
spatial control guides the generation process to match with
the input mask, accurately.

Furthermore, we visualize the progress of spatial control
of VCM by each time step in Fig. 14. In the early stage
of generation, VCM mainly controls the generation steps to
match the semantics of the LV and brain. After most of the
semantics have been constructed by the diffusion process,
the LV is not changed. Meanwhile, peripheral areas such
as the cortical and subcortical areas are refined, appearing
relevant structures with the given condition.

Extremely out-of-distribution conditions. Beyond
various spatial control cases, we delve deeper into the in-
vestigation of robustness for VCM through abnormal input
masks. To model the out-of-distribution condition, we re-
place the LV mask condition with a sphere-shaped mask.
Since there is no training sample of the T1w brain MRI scan

with the sphere-shaped LV, we can examine the robustness
of our spatial control method.

Fig. 15 shows the generation results with VCM against
an abnormal condition. Although the abnormal condition
is unseen during VCM training, VCM controls the synthe-
sized image to contain an LV structure localized with the
given sphere mask. In addition, excluding the LV, the corti-
cal area and skull shape show plausible appearances, as well
as the background or the overall image intensity remains un-
affected. However, the subcortical areas such as the corpus
callosum and brain stem are destroyed. Unlike natural im-
ages whose image elements and compositions are highly di-
verse, medical images demand not only perceptually natural
appearance but also anatomically correct structures. Conse-
quently, the spatial control method fails to synthesize im-
ages under anatomically incorrect conditions. Thus, we
suggest that researchers in the medical imaging field should
be careful to use spatial control methods and properly eval-
uate the synthetic medical images.

B. Experimental configuration details
In this section, we provide a detailed description of the

architecture and hyperparameters of VCM and the other
methods for 3D implementations. In addition, we describe
the details of the experiment setting.

B.1. Datasets

The data used in our study are a total of 604 healthy
T1w Brain MRI scans obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database [8]. All im-
ages were registered in MNI space using Advanced Nor-
malization Tools [1]. For the 1D scalar input of BrainLDM,
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Figure 16. Details of VCM from Fig. 3. VCM takes diffusion
priors, new conditions, and time steps as inputs, and outputs two
modulation parameters {γt, βt} to modify the diffusion outputs.

the volume values of LV and Brain were provided through
SynthSeg outputs and demographic information such as sex
and age was obtained from ADNI Image and Data Archive
[8]. We normalize all T1w MRI scans and skull images to
have a zero-to-one value range by min-max normalization
from 0 to 255 values with intensity clipping.

B.2. Implementation details

Network Construction. VCM consists of a time-
conditioned asymmetric U-Net [14] with a deeper encoder
than the decoder and is implemented by modifying the
DiffusionModelUNet MONAI generative [12]. We
use 16 base channels for the encoder, with a channel mul-
tiplier of [1,2,3,4,8,16], whereas the decoder is used with
the last three elements of the encoder multiplier, with the
same base channels. An MLP with two layers is used
to embed each time step in the feature space (the purple
box in Fig. 16), while a single linear layer is utilized to
project time embedding in the convolutional blocks in ev-
ery VCM layer (the yellow box in Fig. 16). Two residual
blocks are used at every level, composed of a time embed-
ding layer, GroupNorm, SWISH activation functions, and a
convolution layer. Since the BrainLDM autoencoder maps
a 1 × 160 × 224 × 160 T1w brain MRI scan to a latent
vector with dimensions of 3 × 20 × 28 × 20, the last split
layers of the VCM produce two modulation parameter ten-
sors {γt, βt} in the same latent dimension.

Hyperparameters. For all experiments of Sec. 4, the
linear beta scheduler for noise scheduling is used in the beta
range of 0.0015 and 0.0205. We train every method using
DDPM [6] with 1000 diffusion steps, while DDIM [15] is
used for inference with 200 diffusion steps. Our VCM runs
over 10,000 epochs with a minibatch of 16 using AdamW
optimizer [9] and a base learning rate of 5×10−5. The λ−1

of the loss for VCM in Eq. (4) is 16×3×20×28×20. Axial
flip augmentation is applied to improve generation perfor-

Table 5. Comparison of training time of conditional generation
methods in 3D medical images.

Method LDM (from scratch) LDM (fine-tuning) MCM T2I-Adapter

# params 475.43M 553.19M 11.45M 447.26M
GPU days 2.431 2.778 1.250 4.375

Method ControlNet ControlNet-LITE ControlNet-MLP VCM

# params 193.88M 63.56M 9.03M 45.88M
GPU days 4.375 3.472 3.264 3.882

mance according to Nichol, A. Q. and Dhariwal, P. [11],
and linear learning rate annealing is employed to prevent
unstable training in the early stage for all methods used in
Sec. 4.

To analyze multimodal regularization techniques, we uti-
lized two conditions: semantic map and partial image. Dur-
ing training VCM, the single semantic map condition, the
single partial image condition, and the dual conditions ap-
pear with probability of 0.3, 0.3, and 0.4, respectively. We
use separate asymmetric parts of the encoder for each con-
dition (see Fig. 16) while keeping the number of parameters
for VCM.

B.3. Comparison methods

In the experiments of Secs. 4.1 and 4.2, the input hint
CNN encoder and Pixelunshuffle are also imple-
mented in volumetric spaces for the input downsampling
of ControlNet [20] and T2I-Adapter [10], respectively. In
addition, we implement MCM-L [4] which has the same
complexity as our VCM but utilizes the MCM architecture.
In the cases of ControlNet-LITE and ControlNet-MLP, we
refer to their repository [19] and replace all 2D learnable
layers with 3D counterparts. For both variations of Con-
trolNet, we employ the input hint CNN encoder to maintain
the downsampling methods of the original paper [20]. For
fine-tuning BrainLDM [13] directly, we adjust the first con-
volution layer to adapt additional spatial conditions, while
we directly input the conditions into the model for training
an LDM from scratch, referring to the Dorjsembe, Zolna-
mar, et al. approach [3].

In Tab. 5, we provide GPU days of the comparison meth-
ods from Sec. 4. Especially, the GPU days are analyzed
by the same hyperparameters with 10,000 epochs with a
minibatch of 16. For learning spatial controls within the
3D latent space, there is no significant difference among
the competitive method ControlNet, lightweight variants of
ControlNet (ControlNet-LITE and -MLP), and our VCM
despite the differences in their model complexity.

Super-resolution For the super-resolution (SR) tasks in
Sec. 4.3 and Appendix A.1, we re-implement LIIF-3D by
replacing the 2D learnable operation with the 3D counter-
parts of LIIF [2]. Also, due to hardware limitations, we ap-
ply a patch-based approach to LIIF-3D to perform the SR in



Table 6. Quantitative evaluation of the synthetic images on the
validation dataset and the results of VCM with abnormal LV mask.

Methods # train data FID 2D↓ FID 3D↓ LPIPS↑

BrainLDM 31,740 [16] 84.511 2.247 0.340
LDM (fine-tuning) 50 [8] 83.619 2.497 0.314

LDM (from scratch) 50 [8] 92.404 4.845 0.476
VCM (sphere masks) - 81.444 7.515 0.331

(a)

(b)

(d)

(c)

Figure 17. Examples of the generated output in Tab. 6. (a) the
synthesized output of BrainLDM. (b) and (c) shows the samples
from LDM trained by fine-tuning and from scratch, respectively.
(d) shows the result of the abnormal condition of Appendix A.4.

volumetric space. To learn continuous image representation
as in the original research [2], the model was trained with
random scales in ×1−×4 and tested. In the case of Invers-
eSR [17], we utilize the decoder method and their official
repository.

C. Discussion for evaluation metrics
In the experiments (Sec. 4), we employ the FID [5] and

LPIPS [21] to measure image quality and diversity, respec-
tively, since they are widely used in both 2D synthetic nat-
ural images [4] and 3D medical images [3]. However, we
discuss that these metrics are insufficient for analyzing syn-
thetic medical images.

As illustrated in Tab. 6, samples from BrainLDM have
84.511 2D FID from real scans in the validation dataset of
Sec. 4. However, even the wrongly synthesized images with

noisy white matter in Fig. 17 (b) have a smaller 2D FID of
83.619, which means closer to the real image distribution.
In addition, although 3D FID is larger than BrainLDM,
it has a subtle difference, which could be misobserved in
plausible synthetic images. Moreover, for the synthetic im-
age conditioned with sphere LV masks (Fig. 17 (d)), the
2D FID is even smaller than the BrainLDM, while the 3D
FID is large enough to judge that the synthetic image is far
from the real image distribution. The evaluation results of
the severely destroyed synthetic images (Fig. 17 (c)), which
have a much more degraded and noisy appearance, finally
show distinguishable large values in both 2D and 3D FID.
In the case of LPIPS metrics, large values, which means
high diversity in natural images, are insufficient to explain
the diversity of generative models for medical images, since
a severely abnormal appearance brings large LPIPS values,
as shown in Fig. 17.

Based on the quantitative evaluation in Tab. 6, the fol-
lowing discussion points arise. First, qualitative evaluation
is important in assessing the validity of synthetic medical
images. Additionally, to evaluate the quality of 3D medi-
cal images, 2D FID which is widely used to measure the
distance with 2D slices is less effective than 3D FID which
refers to the entire 3D image. Finally, when large FID and
LPIPS are measured, researchers should keep in mind that
this means that the model synthesizes destroyed medical
images beyond anatomically unnatural images or diverse
images. Above all, innovative and effective evaluation met-
rics for medical images are essential for advancing research
on medical image generative models.
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