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A. Datasets

A.1. Synthetic Face Images

We utilize StyleGAN [17] and StyleGAN3 [16] to gen-
erate synthetic face images. We use StyleGAN and Style-
GAN3 trained with Flickr-Faces-HQ dataset at 1024⇥1024.
In StyleGAN, we use the attributes that vary weight pro-
vided by Ref. [25] and the attributes that vary age and smile
provided by InterFaceGAN [28]. In StyleGAN3, we em-
ploy the 40 attributes included in the CelebA dataset [20]
provided by Ref. [2]. For each attribute, StyleGAN gen-
erates 50,000 identities and StyleGAN3 generates 5,000
identities for synthetic face images. Among the attributes,
identities are the same for StyleGAN, and identities are
different for StyleGAN3. Therefore, StyleGAN generates
50,000 identities, and StyleGAN3 generates 5,000 iden-
tities ⇥ 40 attributes = 200,000 identities, resulting in a
total of 250,000 identities. For each identity, we gen-
erate 101 synthetic images for each attribute with ↵ =
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Figure A. Examples of face images generated by StyleGAN for all
attributes.

{�5.0,�4.9, · · · , 0.0, · · · , 4.9, 5.0} 1. Since pairs of xi

and yi are randomly sampled from 101 images, the num-
ber of images used for training is an even number, up to
100 2. Finally, StyleGAN generates 50,000 identities ⇥ 3
attributes ⇥ 100 images = 15,000,000 (15M) images, and
StyleGAN3 generates 5,000 identities ⇥ 40 attributes ⇥ 100
images = 20,000,000 (20M) images, for a total of 35M im-
ages to be used for FRL.

1In StyleGAN, face images with ↵ = 0.0 were excluded to avoid du-
plicating the same image since the identities are the same among the at-
tributes.

2In curriculum learning, pairs are created with a restriction on the range
of change |↵yi � ↵xi |, which may be less than 100 images.
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Figure B. Examples of face images generated by StyleGAN3 for
part of 40 attributes.



Table A. References and boundaries used in facial manipulation for each attribute.

Attribute (Generative model) Reference Boundary

Weight (StyleGAN) Ref. [25] weight orth mouth.npy 3

Age (StyleGAN) InterFaceGAN [28] stylegan ffhq age w boundary.npy 4

Smile (StyleGAN) InterFaceGAN [28] stylegan ffhq smile w boundary.npy 4

40 attributes in CelebA (StyleGAN3) Ref. [2] Aligned FFHQ/attribute boundary.npy 5,6

3 https://github.com/LARC-CMU-SMU/facial-weight-change
4 https://github.com/genforce/interfacegan
5

attribute corresponds to the name of each attribute.
6 https://github.com/yuval-alaluf/stylegan3-editing

Table B. ComFace settings for FRL.
Config Value

Batch size 1024
Optimizer Adam [18]
Learning rate 4.0e-4
Epochs 12
Learning rate schedule halved in 10 epochs
Computing resource 32 NVIDIA A100 GPUs
Image size 224⇥224

Data augmentation

random horizontal flip (p = 0.5) +
random color jitter (p = 0.8, brightness = 0.4, contrast = 0.4,

saturation = 0.4, hue = 0.1) + random grayscale conversion (p = 0.2) +
random resized crop (scale = (0.2,1.0)), p being a probability.

Figure A illustrates examples of face images generated
by StyleGAN for all attributes. Figure B illustrates exam-
ples of face images generated by StyleGAN3 for part of the
40 attributes. Table A shows the references and boundaries
used in face manipulation for each attribute.

A.2. Datasets for Downstream Tasks

Facial Expression Change Dataset: We use the public
dataset DISFA [21, 22]. We apply a facial detection
method [15] to face videos taken by right camera and
extract images containing the entire face (see Fig. 4 of the
main paper). The action unit (AU) intensity was annotated
for each video frame with six levels from 0 (not present)
to 5 (maximum intensity) for several AUs. Annotation
was performed by a coder certified in use of the Facial
Action Coding System (FACS) [12]. All participants gave
informed consent. Twenty-five of the 27 gave permission
for use of their images in publications. In our main paper,
we include facial images of subjects who gave permission
for publication. See Ref. [22] for other details.

Weight Change Dataset: We use the dataset col-
lected in Ref. [1] (Edema-A) and our newly collected
dataset (Edema-B). These datasets contain face images and
weight data acquired on several dialysis days per patient.
As in Ref. [1], we apply a facial detection method [15]
to face videos and extract images containing the center of
face. For both datasets, all procedures in the studies were

approved by the Ethical Review Board and all patients
gave informed consent. In the training phase, we perform
transfer learning on weight change using all pairs within
individuals, including pre- and post-dialysis (i.e., compar-
ing faces between pre-/pre-dialysis, post-/post-dialysis, and
pre-/post-dialysis). In the test phase, we estimate weight
change using pairs of pre- and post-dialysis (i.e., comparing
faces between pre-/post-dialysis only) according to Ref. [1].

Age Change Dataset: We use the public dataset FG-
NET [24], which contains 1002 face images from 82
subjects with large variations of lighting, pose, and facial
expression. We directly use face images from the original
dataset. FG-NET has been used in many age estimation
studies [6, 11, 29, 33]. One of the major aims of FG-NET
project was to encourage research technology development
in the area of face and gesture recognition by specifying
and supplying suitable image sets. See Ref. [24] for other
details.

B. Implementation Details

B.1. Details for FRL

Our ComFace settings for FRL are summarized in
Table B. The data augmentation setting is similar to
MoCo [14]. The model at the epoch with the lowest val-
idation loss in FRL is used for the downstream tasks for
comparing faces.

https://github.com/LARC-CMU-SMU/facial-weight-change
https://github.com/genforce/interfacegan
https://github.com/yuval-alaluf/stylegan3-editing
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Figure C. Details of network structures for inter-personal and intra-personal learning.

Table C. Facial expression change estimation settings.

Config Value

Batch size 16
Optimizer Adam [18]
Learning rate 1.0e-5
Epochs 20 (linear evaluation) / 10 (fine-tuning)
Learning rate schedule None
Computing resource single NVIDIA GeForce RTX 3060 GPU
Image size 224⇥224

Data augmentation

random horizontal flip (p = 0.5) +
random color jitter (p = 0.8, brightness = 0.4, contrast = 0.4,

saturation = 0.4, hue = 0.1) + random grayscale conversion (p = 0.2) +
random resized crop (scale = (0.5,1.0)), p being a probability.

Details of network structures for inter-personal and intra-
personal learning are illustrated in Figure C. The network
structure in intra-personal learning is similar to the Siamese
network in Ref. [27].

B.2. Details for Downstream Tasks

We describe the implementation details for each down-
stream task. In transfer learning for all downstream tasks,
we randomly sample xtask

i and ytask
i pairs for each epoch

and construct mini-batches. The model at the epoch with
the lowest validation loss in transfer learning is used for
testing.

Facial Expression Change: The settings are summa-
rized in Table C. The data augmentation setting is similar
to ComFace setting for FRL. For fair comparisons, all
comparative methods also follow the settings in Table C.

Weight Change: The settings are summarized in Ta-
ble D. The data augmentation setting is the same as in the
previous weight estimation method [1]. For fair compar-
isons, all comparative methods also follow the settings in
Table D.

In the cross-dataset evaluation (Edema A!B in Table
2 of the main paper), the four models trained on Edema-

A (from four-fold cross-validation) are tested on Edema-B.
Table 2 of the main paper reports the average performance
of the four models.

We also provide details of the experimental setup in
comparison of ComFace with the previous method [1]
(results are shown in Table 3 of the main paper). To ensure
a fair comparison between ComFace and the previous
method [1], we use the same test data for evaluation with
the following setup.

• Method [1]: This method performs pre-training on
multiple patient data and then builds patient-specific
models via transfer learning on per-patient data. As in
the original paper [1], the patient-specific model uses
24 patients for pre-training and 15 patients for trans-
fer learning and testing. For each of the 15 patients
in transfer learning, we perform a leave-one-day-out
cross-validation, where the data from one day are used
for testing and the data from the other days are used
for training, as in Ref. [1]. In the training data, per-
patient data on randomly selected dialysis days (from
1 to 3 days, as shown in Table 3 of the main paper) are
used for transfer learning. With the leave-one-day-out
cross-validation, data from all days are used for test-
ing.



Table D. Weight change estimation settings.

Config Value

Batch size 16
Optimizer Adam [18]
Learning rate 1.0e-4
Epochs 10 (fine-tuning)
Learning rate schedule None
Computing resource single NVIDIA GeForce RTX 3060 GPU
Image size 224⇥224

Data augmentation

random horizontal flip (p = 0.5) +
random color jitter (p = 0.8, brightness = 0.4, contrast = 0.4,

saturation = 0.4, hue = 0.1) + random grayscale conversion (p = 0.2),
p being a probability.

Table E. Age change estimation settings.

Config Value

Batch size 16
Optimizer Adam [18]
Learning rate 4.6e-4
Epochs 10 (fine-tuning)
Learning rate schedule None
Computing resource single NVIDIA GeForce RTX 3060 GPU
Image size 224⇥224

Data augmentation

random horizontal flip (p = 0.5) +
random color jitter (p = 0.8, brightness = 0.4, contrast = 0.4,

saturation = 0.4, hue = 0.1) + random grayscale conversion (p = 0.2) +
random resized crop (scale = (0.5,1.0)), p being a probability.

• ComFace (Ours): We perform a four-fold cross-
validation as in the other validations, and the same 15
patient data as in the method [1] are used for testing.
As in method [1], data from all days in 15 patients are
used for testing. Note that in our method, test patients
are not included in the training data.

Age Change: The settings are summarized in Table E. The
data augmentation setting is similar to ComFace setting for
FRL. For fair comparisons, all comparative methods also
follow the settings in Table E.

B.3. Summary of Comparative and Proposed Meth-

ods

Table F summarizes the training datasets, training scales,
training sources, and backbones for all comparative and
proposed methods.

Table G describes pre-trained checkpoints for compara-
tive methods. In the same manner as our method, the com-
parative methods perform transfer learning (linear evalua-
tion or fine-tuning) from the pre-trained weights.

Figure D. FIQ score

C. Results

C.1. Quality Assessment of Synthetic Images

We confirmed the quality of synthetic images with face
image quality (FIQ) assessment [30] as in previous syn-
thetic data study for face recognition [13]. Figure D rep-
resents a histogram of FIQ scores for identities in synthetic
images. We see that the majority of identities are good qual-
ity (we empirically confirmed the quality is good when the
score � 0.6). Table H shows transfer performance when



Table F. Training datasets, training scales, training sources, and backbones for all comparative and proposed methods.

Method Dataset Training Scale Training Source Backbone

Scratch - - - ResNet50

General Pre-training:
ImageNet [10] ImageNet 1.28M Images+Human labels ResNet50
VGGFace2 [4] VGGFace2 3.31M Images+Human labels ResNet50

Visual Representation Learning:
SimCLR [7] ImageNet 1.28M Images ResNet50
MoCo v2 [8, 14] ImageNet 1.28M Images ResNet50
SwAV [5] ImageNet 1.28M Images ResNet50
Barlow Twins [32] ImageNet 1.28M Images ResNet50

Facial Representation Learning:
Bulat et al. [3] VGGFace 3.4M Face images ResNet50
FaRL [34] LAION-FACE [34] 20M Face images+Text ViT-B/16
PCL [19] VoxCeleb1 [23]+VoxCeleb2 [9] unknown Face images 16-layer CNN
ComFace (Ours) Synthetic data 35M Synthetic face images+Intensity ↵ ResNet50

Table G. Pre-trained checkpoints for comparative methods.

Method Backbone Pre-trained checkpoint

General Pre-training:
ImageNet [10] ResNet50 resnet50 7

VGGFace2 [4] ResNet50 resnet50 scratch weight.pkl 8

Visual Representation Learning:
SimCLR [7] ResNet50 resnet50-1x.pth 9,10

MoCo v2 [8, 14] ResNet50 moco v2 200ep pretrain.pth.tar 11

SwAV [5] ResNet50 swav 200ep pretrain.pth.tar 12

Barlow Twins [32] ResNet50 resnet50.pth 13

Facial Representation Learning:
Bulat et al. [3] ResNet50 flr r50 vgg face.pth 14

FaRL [34] ViT-B/16 FaRL-Base-Patch16-LAIONFace20M-ep16.pth 15

PCL [19] 16-layer CNN best.pth 16

7 https://github.com/huggingface/pytorch-image-models, timm==0.4.12
8 https://github.com/cydonia999/VGGFace2-pytorch
9 https://github.com/google-research/simclr
10 Original TensorFlow checkpoints were converted to PyTorch format by https://github.com/
tonylins/simclr-converter

11 https://github.com/facebookresearch/moco
12 https://github.com/facebookresearch/swav
13 https://github.com/facebookresearch/barlowtwins
14 https://github.com/1adrianb/unsupervised-face-representation
15 https://github.com/FacePerceiver/FaRL
16 https://github.com/DreamMr/PCL

using synthetic images of identities selected based on FIQ
scores. We find that it is better to use all synthetic images
for pre-training without restricting by FIQ scores (our final
setting). Therefore, only high quality images are not neces-
sarily required for representation learning.

C.2. Evaluation for Several Backbones

Table I compares performance in several backbones for
ComFace. ResNet50 is more suitable for ComFace than
ViT and other scales of ResNets. This could be because the
dataset size for downstream tasks is not large and a medium-
scale network performs better.

C.3. Evaluation for Other Major AUs

In addition to AU6 and 12 in the main paper, we evaluate
the performance of the other major AUs. To directly eval-
uate the learned representation, we use linear evaluation.
Table J shows correlation coefficients for several AUs. We
find that ComFace is superior to the other methods for most
AUs, demonstrating its generalization ability for a variety
of facial expressions.

C.4. Settings of Linear Evaluation

In linear evaluation of the main paper, the backbone is
frozen and the linear layer is trained from scratch. This

https://github.com/huggingface/pytorch-image-models
https://github.com/cydonia999/VGGFace2-pytorch
https://github.com/google-research/simclr
https://github.com/tonylins/simclr-converter
https://github.com/tonylins/simclr-converter
https://github.com/facebookresearch/moco
https://github.com/facebookresearch/swav
https://github.com/facebookresearch/barlowtwins
https://github.com/1adrianb/unsupervised-face-representation
https://github.com/FacePerceiver/FaRL
https://github.com/DreamMr/PCL


Table H. Transfer performance with respect to FIQ score v. Line
indicated in gray is our final setting. Results are evaluated in fine-
tuning.

Score v
AU6 AU12 Edema-A Edema-B Age

Corr." Corr." Acc." Acc." Corr."

v � 0 0.663 0.831 88.6 96.3 0.870
v � 0.1 0.645 0.824 85.6 93.8 0.863
v � 0.2 0.647 0.826 88.7 95.9 0.845
v � 0.4 0.653 0.828 85.1 94.3 0.852
v � 0.6 0.641 0.831 86.6 95.7 0.852

Table I. Performance for several backbones. Results are evaluated
in fine-tuning.

Backbone AU6 AU12 Edema-A Edema-B Age
Corr." Corr." Acc." Acc." Corr."

ResNet18 0.658 0.826 87.2 93.2 0.870

ResNet50 0.663 0.831 88.6 96.3 0.870

ResNet101 0.660 0.820 86.4 93.6 0.853
ViT-B/16 0.609 0.825 81.8 93.9 0.843

Table J. Correlation coefficients for several AUs

Method AU1 AU2 AU4 AU5 AU9 AU17 AU20 AU25

General Pre-training:
ImageNet [10] 0.209 0.075 0.177 0.004 0.065 -0.023 0.060 0.519
VGGFace2 [4] 0.196 0.213 0.403 0.022 0.017 0.128 -0.004 0.656

Visual Representation Learning:
SimCLR [7] 0.292 0.190 0.330 -0.071 0.065 0.001 0.073 0.629
MoCo v2 [8, 14] 0.113 0.073 0.363 -0.030 0.089 0.016 0.014 0.637
SwAV [5] 0.256 0.192 0.370 0.049 0.008 -0.034 0.152 0.678
Barlow Twins [32] 0.251 0.177 0.495 0.070 0.106 0.013 0.104 0.690

Facial Representation Learning:
Bulat et al. [3] 0.095 0.207 0.295 0.010 0.255 0.031 0.068 0.549
FaRL [34] 0.270 0.262 0.627 0.199 0.158 0.125 0.148 0.735
PCL [19] 0.303 0.122 0.229 0.024 0.007 0.030 -0.024 0.566
ComFace (Ours) 0.443 0.468 0.582 0.451 0.463 0.155 0.160 0.746

setting is the same for all methods in order to ensure fair
comparisons. On the other hand, ComFace can also train
the linear layer from the pre-trained weights. We therefore
consider the following two settings here: In linear evalua-
tion, (a) the backbone is frozen and the linear layer is trained
from scratch (our final setting) (b) the backbone is frozen
and the linear layer is trained from the pre-trained weights.
Table K compares the performance of two settings in linear
evaluation. It shows that setting(a) performs better than set-
ting(b). This may be because the backbone is frozen and it
is more reasonable to train the linear layer from scratch in
order to match the linear layer with the backbone in trans-
fer learning. Nevertheless, setting(b) still outperforms other
comparative methods (see Table 1 of the main paper).

Table K. Performance in two linear evaluation settings: (a) back-
bone is frozen and linear layer is trained from scratch (b) backbone
is frozen and linear layer is trained from pre-trained weights. Line
indicated in gray is our final setting.

AU6 AU12
Linear Linear

Linear Evaluation Setting MAE# Corr." MAE# Corr."

(a) Backbone: Frozen, Linear: Scratch 0.639 0.648 0.663 0.786
(b) Backbone: Frozen, Linear: Pre-trained 0.704 0.565 0.711 0.752

C.5. Settings of Fine-tuning

In fine-tuning of the main paper, the backbone and lin-
ear layer are trained from the pre-trained weights. To eval-
uate the effectiveness of training the linear layer from the
pre-trained weights, we compare the following two set-
tings here: In fine-tuning, (c) the backbone is trained from
the pre-trained weights and the linear layer is trained from
scratch (d) the backbone and linear layer are trained from
the pre-trained weights (our final setting). Table L compares
the performance of two settings in fine-tuning. It shows that
setting(d) performs better than setting(c). This result sug-
gests that the linear layer trained by intra-personal learning
in FRL is useful for downstream tasks for comparing faces.
To achieve the best performance, we use setting(d) in fine-
tuning.

C.6. Comparison with Visual Representation

Learning Using Synthetic Images

We compare ComFace with a recent visual repre-
sentation learning method using synthetic data, Sta-
bleRep 17 [31]. Table M shows the results of weight change
estimation in representation learning methods using syn-
thetic data. Although our model has a smaller training scale
than StableRep, ComFace still has superior transfer per-
formance. We expect that this is because the representa-
tions learned using synthetic face images from StyleGANs
are more suitable for the estimation of intra-personal facial
changes than those learned using general images from Sta-
ble Diffusion [26].

C.7. Full Results of Age Change Estimation

Table N shows the full results of estimating age change
in fine-tuning. We can see that ComFace outperforms all
other methods.

17The pre-trained checkpoint is cc12m 1x.pth from https://
github.com/google- research/syn- rep- learn/tree/
main/StableRep.

https://github.com/google-research/syn-rep-learn/tree/main/StableRep
https://github.com/google-research/syn-rep-learn/tree/main/StableRep
https://github.com/google-research/syn-rep-learn/tree/main/StableRep


Table L. Performance in two fine-tuning settings: (c) backbone is trained from pre-trained weights and linear layer is trained from scratch
(d) backbone and linear layer are trained from pre-trained weights. Line indicated in gray is our final setting.

Fine-tuning Setting AU6 AU12 Edema-A Edema-B Age
Corr." Corr." Acc." Acc." Corr."

(c) Backbone: Pre-trained, Linear: Scratch 0.666 0.829 84.4 91.9 0.841
(d) Backbone: Pre-trained, Linear: Pre-trained 0.663 0.831 88.6 96.3 0.870

Table M. Results of weight change estimation in representation learning methods using synthetic data. Results are evaluated in fine-tuning.
Training scales, generative models for synthesis, and backbones are described.

Edema-A Edema-B Edema-A!B

Method Scale Generative model Backbone MAE# Corr." Acc." MAE# Corr." Acc." MAE# Corr." Acc."

StableRep [31] 100M Stable Diffusion ViT-B/16 1.434 0.725 86.5 1.439 0.799 93.9 1.715 0.809 93.3
ComFace (Ours) 35M StyleGANs ResNet50 1.394 0.750 88.6 1.523 0.801 96.3 1.668 0.819 93.8

Table N. Results of estimating age change. Results are evaluated
in fine-tuning.

Method MAE# Corr."

Scratch 8.980 0.514

General Pre-training:
ImageNet [10] 7.863 0.614
VGGFace2 [4] 8.783 0.511

Visual Representation Learning:
SimCLR [7] 6.947 0.729
MoCo v2 [8, 14] 9.254 0.431
SwAV [5] 6.368 0.780
Barlow Twins [32] 6.686 0.758

Facial Representation Learning:
Bulat et al. [3] 6.327 0.783
FaRL [34] 5.249 0.851
PCL [19] 8.998 0.451
ComFace (Ours) 4.914 0.870

References

[1] Y. Akamatsu, Y. Onishi, H. Imaoka, J. Kameyama, et al.
Edema estimation from facial images taken before and af-
ter dialysis via contrastive multi-patient pre-training. IEEE

Journal of Biomedical and Health Informatics, 27(3):1419–
1430, 2023. 2, 3, 4

[2] Y. Alaluf, O. Patashnik, Z. Wu, A. Zamir, et al. Third time’s
the charm? image and video editing with StyleGAN3. In
Proc. European Conf. Computer Vision Workshops, pages
204–220. Springer, 2022. 1, 2

[3] A. Bulat, S. Cheng, J. Yang, A. Garbett, et al. Pre-training
strategies and datasets for facial representation learning. In
Proc. European Conf. Computer Vision (ECCV), pages 107–
125. Springer, 2022. 5, 6, 7

[4] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, et al. Vggface2: A
dataset for recognising faces across pose and age. In Proc.

Int. Conf. Automatic Face & Gesture Recognition (FG),
pages 67–74, 2018. 5, 6, 7

[5] M. Caron, I. Misra, J. Mairal, P. Goyal, et al. Unsuper-
vised learning of visual features by contrasting cluster as-
signments. In Proc. Advances in Neural Information Pro-

cessing Systems (NeurIPS), volume 33, pages 9912–9924,
2020. 5, 6, 7

[6] P. Chen, X. Zhang, Y. Li, J. Tao, et al. DAA: A delta age
adain operation for age estimation via binary code trans-
former. In Proc. IEEE/CVF Conf. Computer Vision and Pat-

tern Recognition (CVPR), pages 15836–15845, 2023. 2
[7] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple

framework for contrastive learning of visual representations.
In Proc. Int. Conf. Machine Learning (ICML), pages 1597–
1607, 2020. 5, 6, 7

[8] X. Chen, H. Fan, R. Girshick, and K. He. Improved base-
lines with momentum contrastive learning. arXiv preprint

arXiv:2003.04297, 2020. 5, 6, 7
[9] J. Chung, A. Nagrani, and A. Zisserman. VoxCeleb2: Deep

speaker recognition. In Proc. Interspeech, 2018. 5
[10] J. Deng, W. Dong, R. Socher, L. Li, et al. Imagenet: A large-

scale hierarchical image database. In Proc. IEEE/CVF Conf.

Computer Vision and Pattern Recognition (CVPR), pages
248–255, 2009. 5, 6, 7

[11] Z. Deng, H. Liu, Y. Wang, C. Wang, et al. PML: Progres-
sive margin loss for long-tailed age classification. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 10503–10512, 2021. 2
[12] P. Ekman and W. V. Friesen. Facial action coding system.

Environmental Psychology & Nonverbal Behavior, 1978. 2
[13] M. Falkenberg, A. Bensen Ottsen, M. Ibsen, and C.

Rathgeb. Child face recognition at scale: Synthetic data
generation and performance benchmark. arXiv preprint

arXiv:2304.11685, 2023. 4
[14] K. He, H. Fan, Y. Wu, S. Xie, et al. Momentum contrast

for unsupervised visual representation learning. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 9729–9738, 2020. 2, 5, 6, 7



[15] H. Imaoka, H. Hashimoto, K. Takahashi, A. F. Ebihara, et al.
The future of biometrics technology: from face recognition
to related applications. APSIPA Transactions on Signal and

Information Processing, 10:e9, 2021. 2
[16] T. Karras, M. Aittala, S. Laine, E. Härkönen, et al. Alias-free

generative adversarial networks. In Proc. Advances in Neu-

ral Information Processing Systems (NeurIPS), volume 34,
pages 852–863, 2021. 1

[17] T. Karras, S. Laine, and T. Aila. A style-based generator
architecture for generative adversarial networks. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 4401–4410, 2019. 1
[18] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 2, 3, 4
[19] Y. Liu, W. Wang, Y. Zhan, S. Feng, et al. Pose-disentangled

contrastive learning for self-supervised facial representa-
tion. In Proc. IEEE/CVF Conf. Computer Vision and Pattern

Recognition (CVPR), pages 9717–9728, 2023. 5, 6, 7
[20] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face at-

tributes in the wild. In Proc. IEEE/CVF Int. Conf. Computer

Vision (ICCV), 2015. 1
[21] S. M. Mavadati, M. H. Mahoor, K. Bartlett, and P. Trinh. Au-

tomatic detection of non-posed facial action units. In Proc.

Int. Conf. Image Processing (ICIP), pages 1817–1820, 2012.
2

[22] S. M. Mavadati, M. H. Mahoor, K. Bartlett, P. Trinh, et al.
Disfa: A spontaneous facial action intensity database. IEEE

Transactions on Affective Computing, 4(2):151–160, 2013. 2
[23] A. Nagrani, J. Chung, and A. Zisserman. Voxceleb: a large-

scale speaker identification dataset. In Proc. Interspeech,
2017. 5

[24] G. Panis, A. Lanitis, N. Tsapatsoulis, and T. F. Cootes.
Overview of research on facial ageing using the FG-NET
ageing database. IET Biometrics, 5(2):37–46, 2016. 2

[25] V. Pinnimty, M. Zhao, P. Achananuparp, and E. Lim. Trans-
forming facial weight of real images by editing latent space
of StyleGAN. arXiv preprint arXiv:2011.02606, 2020. 1, 2

[26] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, et al. High-
resolution image synthesis with latent diffusion models. In
Proc. IEEE/CVF Conf. Computer Vision and Pattern Recog-

nition (CVPR), pages 10684–10695, 2022. 6
[27] O. Schlesinger, N. Vigderhouse, D. Eytan, and Y. Moshe.

Blood pressure estimation from ppg signals using convolu-
tional neural networks and siamese network. In Proc. Int.

Conf. Acoustics, Speech and Signal Processing (ICASSP),
pages 1135–1139, 2020. 3

[28] Y. Shen, J. Gu, X. Tang, and B. Zhou. Interpreting the
latent space of GANs for semantic face editing. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 9243–9252, 2020. 1, 2
[29] N. Shin, S. Lee, and C. Kim. Moving window regression: A

novel approach to ordinal regression. In Proc. IEEE/CVF

Conf. Computer Vision and Pattern Recognition (CVPR),
pages 18760–18769, 2022. 2

[30] P. Terhorst, J. N. Kolf, N. Damer, F. Kirchbuchner, et al.
SER-FIQ: Unsupervised estimation of face image qual-
ity based on stochastic embedding robustness. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 5651–5660, 2020. 4
[31] Y. Tian, L. Fan, P. Isola, H. Chang, and D. Krishnan. Sta-

bleRep: Synthetic images from text-to-image models make
strong visual representation learners. In Proc. Advances in

Neural Information Processing Systems (NeurIPS), 2023. 6,
7

[32] J. Zbontar, L. Jing, I. Misra, Y. LeCun, et al. Barlow Twins:
Self-supervised learning via redundancy reduction. In Proc.

Int. Conf. Machine Learning (ICML), pages 12310–12320,
2021. 5, 6, 7

[33] C. Zhang, S. Liu, X. Xu, and C. Zhu. C3AE: Exploring
the limits of compact model for age estimation. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 12587–12596, 2019. 2
[34] Y. Zheng, H. Yang, T. Zhang, J. Bao, et al. General facial rep-

resentation learning in a visual-linguistic manner. In Proc.

IEEE/CVF Conf. Computer Vision and Pattern Recognition

(CVPR), pages 18697–18709, 2022. 5, 6, 7


	. Datasets
	. Synthetic Face Images
	. Datasets for Downstream Tasks

	. Implementation Details
	. Details for FRL
	. Details for Downstream Tasks
	. Summary of Comparative and Proposed Methods

	. Results
	. Quality Assessment of Synthetic Images
	. Evaluation for Several Backbones
	. Evaluation for Other Major AUs
	. Settings of Linear Evaluation
	. Settings of Fine-tuning
	. Comparison with Visual Representation Learning Using Synthetic Images
	. Full Results of Age Change Estimation


