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In this supplemental material, we provide further explana-
tions of the experiments, and more qualitative results fol-
lowed by additional ablative studies, limitations, and future
directions.

1. More Experimental details

Stable Diffusion. Stable Diffusion (SD) represents a state-
of-the-art text-to-image model capable of generating photo-
realistic images from textual prompts. Operating as a con-
ditional diffusion model, SD gradually removes noise from
a noisy sample, transforming it into a realistic image that
reflects the input text. This process iteratively refines the
image’s latent representation to match the visual context de-
scribed by the text.

The model functions within a latent space framework,
where images are initially embedded using a Variational
Autoencoder (VAE) [6]. A Noise Scheduler [5] introduces
noise to the latent image representation, and a U-Net [9]
is trained to predict and remove this noise. During infer-
ence, the Noise Scheduler and U-Net collaborate to progres-
sively refine the latent space representation, culminating in
the generation of denoised images in the pixel space.

In our approach, we leverage the SD model as a founda-
tional text-to-image generator. We adapt the input layer of
SD’s U-Net to accommodate images from the source dataset
and a prompt as conditioning inputs. This prompt combines
a caption generated by BLIP-2 [7], an image captioning
model, with a class label prompt such as ”a photo of class
type class label”. The inclusion of the class label prompt
addresses potential issues with missing or inaccurate class
labels from the captioning model.
Training Details. For fine-tuning the SD (Stable Diffu-
sion) model, we utilize an end-to-end training approach
inspired by InstructPixtoPix [1] on our curated dataset.
Here are the specific details: Training Approach: The
training is conducted using conditioning by images and
prompts, likely following the methodology outlined in In-
structPixtoPix. Hyperparameters: Learning Rate(LR):
0.0001, Optimizer: Adam optimizer with default settings,

Batch Size: Chosen as 50. CIFAR-10 and CIFAR-100:
Training commence from scratch. Hyperparameters are set
following methodologies akin to AutoAugment [3], Fas-
tAutoAugment [8], and RangAugment [4] specifically tai-
lored for CIFAR-10 and CIFAR-100. Caltech101: LR:
0.0001, Optimizer: Adam optimizer with default settings,
Batch Size: Chosen as 50. Brain Tumor Dataset: Dif-
ferent hyperparameter settings are chosen for various clas-
sification models. For RestNet50 and WideRestNet-50-2,
LR:0.001, ADAM optimizer, batch size:50. For Efficient-
Netb0, LR:0.02, Optimizer: SGD with Multistep Scheduler
and gamma=0.1. These settings are chosen to optimize the
fine-tuning process for the SD model, aiming to enhance its
performance in generating diverse and high-quality outputs
aligned with the conditioning inputs and prompts provided
during training

Dataset Preparation. We rearrange the images in
the dataset by randomly selecting two images with the
same class label and pairing them together. For in-
stance, suppose we have five images (I0, I1, I2, I3, and, I4)
in class A. We randomly select two images from
the set and pair them using the indices as follows:
(0, 1), (0, 4), (4, 0), (3, 4), (1, 2), . . .. We can select as
many pairs as we like. The main objective of this pairing is
to use the first image of the pair as an input image (i.e., the
condition image) and generate the second image using the
Diffusion model. During training, the goal is to minimize
the Mean Squared Error (MSE) loss between the generated
sample and the second image in the pair. In our case, we
create two separate random number lists, each containing
several items equal to the number of images in each class
in the dataset. These lists are then paired one-to-one and
only the index pairs are stored rather than the image pairs.
This approach keeps the storage requirements for the im-
ages from increasing. During training, a mini-batch of in-
dex pairs is created, and only the images corresponding to
those indices are accessed.

Additional images were generated using our MVC
method for dataset augmentation. Figures 1, 2, and 3
compare real images with images showing coarse-grained
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Figure 1. Column 1 depicts real images from CIFAR-10. In the remaining columns, the first two columns show mostly coarse-grained
change and the next two columns mostly show fine-grained change.

and fine-grained changes from CIFAR-10, CIFAR-100, and
Brain Tumor Datasets, respectively.

2. Details on Ablation Study
Challenges with Pretrained Diffusion Models. Pretrained
diffusion models often produce samples from the captions
of training images that do not align well with the domain
of the train-test dataset. This issue is particularly notice-
able in fine-grained datasets such as Caltech101 and medi-
cal imaging datasets. The problem is likely due to the train-
ing dataset of the diffusion model not adequately represent-
ing fine-grained and medical images. Consequently, when

used in the medical domain, the pretrained diffusion models
produce less effective and lower-quality samples. This limi-
tation is a result of the model’s training biases towards non-
medical imagery, which hinders its ability to create accurate
representations of medical images. Figure 1 in main pa-
per illustrates this phenomenon for the brain tumor dataset.
However, the pretrained models may generate highly diver-
sified, high-quality samples for commonly available cate-
gories

Effect of different ways of conditioning on generation:
We used various conditioning techniques to diversify im-
ages within a category. This included conditioning the dif-



Figure 2. Column 1 depicts real images from CIFAR-100. In the remaining columns, the first two columns show the mostly coarse-grained
change and the next two columns mostly show fine-grained change.

fusion model using only image embedding, only image cap-
tion embedding, and ”class label with image number” em-
bedding (e.g., ”A Photo 1/n of type ’class label’”). Con-
ditioning with caption embedding provided stable and di-
verse generation. We also attempted to obtain the difference
between two image embeddings to derive an editing direc-
tion (E = E(I1) − E(I2)) for conditioning the diffusion
model. However, this resulted in unstable generation, of-
ten producing images of other classes and distorted images.
As a result, we decided to condition the model with caption
embedding along with image latent conditioning in the fine-
tuned model. Figure 4 illustrates the effect of different con-

ditioning choices on generation. We observed that gener-
ation from image embedding conditioning resulted in poor
and less realistic images. We attribute this to image em-
bedding sometimes not capturing proper information from
images, especially when the image resolution is poor com-
pared to caption embedding. The last row of the figure de-
picts the generation when conditioning is done with both
caption embedding and shape structure, but these also pro-
duced less realistic images.

Effect number of tokens Mixing: We have conducted tests
involving different numbers of token shuffling, where each
token is represented by an embedding vector. After shuf-



Figure 3. Column 1 depicts real images from Brain Tumor Dataset [2]. In the remaining columns, the first two columns show mostly
coarse-grained change and the next two columns mostly show fine-grained change.

fling in the embedding space, we observed that increasing
the number of tokens shuffled does not significantly affect
diversity. In text embedding, the initial tokens, equivalent
to the number of words in the caption, are the most im-
portant, with additional tokens coming from null text (””)
embedding among 77 tokens. As a result, shuffling after
the main caption’s tokens is less impactful. Hence, it is es-
sential to set the shuffling to encompass some of the tokens
from the caption. In Figure 5, the lower sub-figure illus-
trates token shuffling, with Label 1 provided the best diver-
sity by covering caption tokens, while gradually including
more tokens from null text or padding results in less diverse
input caption embedding, thus generating less diverse sam-
ples. Another observation is that by shuffling a small part
of each embedding vector, fine-grained modifications can
be made. We noted that increasing the size of the shuffling
part leads to increasingly distorted images being generated.

In Figure 5, the upper sub-figure represents the effect of
fine-grained changes, where a portion of randomly selected
vectors is replaced. From the figure, it was observed that
Label 1 produced the most realistic results. However, as
the shuffling parts are increased, the input embedding de-
viates increasingly from the original, resulting in distorted
images. Therefore, for coarse-grained changes, it is accept-
able to shuffle any number of tokens, including the first few
tokens representing the captions. For fine-grained changes,
a small part (less than 10) among the 768 is replaced.

Two-Phase Training. In the second approach, we follow
Two-Phase Training. In the initial phase,we trained the clas-
sification models using a combined dataset. This combined
dataset consisted of the real dataset along with a signifi-
cantly larger portion of synthetic data (three to four times
the size of the real dataset).During this phase, the model fo-
cuses on learning general patterns and features present in



Figure 4. First row represents the original images. The next three rows depict images generated by Image Embedding, the subsequent three
rows represent the images generated by caption embedding, and the last row represents the images generated by ControlNet [10].

both real and synthetic data. Exposure to a large volume of
synthetic data helps in understanding the broader distribu-
tion of possible inputs.After the initial training phase, we

fine-tuned the model using only the real dataset with re-
duced training steps and smaller learning rate. This phase
aims to refine the model’s understanding specifically on



Figure 5. First two rows depict the effect of randomly replacing parts of embedding vectors increasingly. The lower two rows illustrate the
effect of tokens shuffling increasingly from label 1 to label 3.

real-world examples. By limiting the number of training
iterations during fine-tuning, we prevent the model from
overfitting to the real dataset. This approach encourages the
model to retain the broader insights gained from the syn-
thetic data while fine-tuning on real examples. Applying a
very small learning rate during fine-tuning ensures that the
model updates its parameters slowly. This cautious adjust-
ment helps in consolidating the knowledge acquired from
the initial phase and minimizes the risk of losing benefi-
cial insights gained from the synthetic data.This two-phase
approach effectively addresses domain shift issues by bal-
ancing exposure to synthetic and real data. It allows the
model to leverage the advantages of synthetic data in the
initial phase while ensuring that final performance metrics
are primarily influenced by real-world data.

Random Selection with Probability. Instead of straight-
forwardly combining all synthetic data with the real dataset,
we introduced a probabilistic approach. This involved ran-
domly selecting synthetic images with a specified probabil-

ity (e.g., 80%) from a pool of synthetic datasets and com-
bining them with batches from the real dataset during train-
ing. This dynamic integration aimed to balance synthetic
and real data effectively. Our findings showed comparable
performance to a two-phase strategy. This method offers
flexibility by incrementally adding synthetic data, optimiz-
ing computational resources by focusing on a subset per
batch rather than overwhelming the model with extensive
synthetic datasets.

For a qualitative and quantitative comparison, please
take a look at the main paper.

3. Limitation and Future Direction
Our extensive experiments have shown that synthetic

data can enhance classifier learning and achieve new state-
of-the-art performance with a comparable margin. Fur-
thermore, our results indicate that current synthetic data
have strong potential for model pre-training, which helps
to bridge domain gaps in small datasets. However, we



have noticed some limitations of pretrained diffusion mod-
els. These models often generate samples that do not align
well with the dataset’s domain. While they produce high-
quality samples for common categories, they are less effec-
tive for fine-grained and medical image domains, likely due
to training biases.

To address this limitation, we have explored the critical
role of fine-tuning and domain-specific augmentation strate-
gies in mitigating out-of-domain sample generation issues
when using pretrained diffusion models. Our proposed fine-
tuning strategies and augmentation prompting methods are
essential for improving the quality and applicability of gen-
erated samples in specialized domains, ultimately enhanc-
ing the overall effectiveness of machine learning models in
real-world applications. We have also investigated the use
of synthetic and real images to improve performance and
found that the second and third approaches mentioned in
section 4.2 in main paper are more effective for training the
classification model.

However, we have identified limitations and challenges
in using synthetic data for image augmentation. One lim-
itation is that due to limited computational resources, we
were unable to further scale up for the larger datasets such
as Imagenet, which would require months to train a diffu-
sion model and generating snthetic dataset of millions of
scale. Additionally, we were unable to explore larger model
sizes and advanced architectures in our current investiga-
tion, which is an area worth exploring in future research.

In our recent studies, we’ve encountered significant chal-
lenges when addressing domain shifts in generated images
while attempting to increase generation diversity. Despite
visually similar appearances upon inspection, augmented
images often exhibit differences in pixel-level distributions
that can impact the learning process of classification mod-
els. Our extensive experiments aimed at achieving a sub-
stantial increase in classification accuracy to 99% through
augmented images have not yielded success due to these
domain diversity issues. The generated samples do not ade-
quately cover the entire distribution seen in the test data.

Looking ahead, our future research direction will fo-
cus on developing novel training strategies for classification
models. Specifically, we aim to explore methods where the
visual distribution of images influences the pixel-level nu-
merical distribution. This approach holds promise for ad-
vancing zero and few-shot learning capabilities. By learn-
ing from visual distributions, akin to how humans natu-
rally learn, we may potentially reduce the reliance on large
datasets and generalize more effectively across diverse im-
age datasets.

Human learning is inherently rooted in visual patterns
rather than underlying numerical distributions. Thus, future
breakthroughs in image augmentation for any-shot learning
will likely hinge on our ability to effectively capture and

leverage visual distributions in the training process.
In summary, our future research will concentrate on pi-

oneering methodologies that bridge the gap between visual
and numerical distributions in image data. This pursuit aims
to unlock new avenues for enhancing the robustness and
efficiency of machine learning models, particularly in sce-
narios requiring adaptation to varied and challenging image
datasets.
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