
Supplementary Material
Adversarial Attention Deficit: Fooling Deformable Vision Transformers with

Collaborative Adversarial Patches

1. Intuition of the attacks
In Deformable DeTr, for each query a handful of the keys

are considered for attention, and this is completely a data-
dependent process (depends on the features of the query to-
ken). Consequently, there isn’t a singular set of key tokens
functioning collectively as a patch, where all query tokens
focus their attention simultaneously. To solve this, first the
source patch has to manipulate the directions of attention
of all the query tokens to focus onto a region of the image,
where then a target adversarial patch is placed for affecting
model loss. The source patch in turn magnifies the target
patch, amplifying its impact on the system, and that is the
reason why a small patch is sufficient for our attacks.

2. Description of attacks in MVDeTr
We begin by defining the projection matrices denoted as

[M1, . . . ,M7], which maps points from image coordinates
to world coordinates. The computation involves the follow-
ing steps:

Mi = (Ii@Ei@Tx)−1 (1)

Where, @ represents the the matrix multiplication opera-
tion and −1 represents the matrix inversion operation. Also,
Ii and Ei is the intrinsic and extrinsic matrices respectively
for view i, and Tx is the transformation matrix that maps
3D world coordinates to 2D image coordinates, and is de-
fined as:

T =


1 0 0
0 1 0
0 0 z
0 0 1


This matrix accounts for the depth z and transforms 3D

coordinates to 2D coordinates in homogeneous coordinates.
The resulting projection matrix Mi maps 2D image coordi-
nates to 3D world coordinates.

We use these projection matrices to project source lo-
cations Si and target locations Ti for view i onto the
ground plane, where the shadow transformer processes all
seven ground-plane projections separately but simultane-
ously (please refer to the original literature [13] for addi-
tional details on the shadow transformer). Subsequently,

the in-pointer loss (Eqn. 2), out-pointer loss (Eqn. 3) and
attention loss (Eqn. 4) are defined like the following:
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In the case of DeTr, D in the losses represented number
of different image scales (resolutions of the original image)
taken into account, and for MVDeTr it represents the num-
ber of different views (from cameras recording the shared
world space) in the system.

3. Variants of Deformable DeTr
Below are the description of the abbreviations used for

different variants of Deformable DeTr. Please refer to the
original literature [24] for additional details:

• DD-SS orDeformable DeTr (single scale): This ver-
sion refers to the utilization of only the res5 feature
map (with a stride of 32) as input feature maps for the
Deformable Transformer Encoder.

• DD-SS-DC5 or Deformable DeTr - single scale,
DC5: In addition to the single scale this version in-
cludes the removal of the stride in the C5 stage of
ResNet and replacing it with a dilation of 2.

• DD-Base or Deformable DeTr: Base version of De-
formable DeTr trained with total batch size of 32.

• DD-IBBR orDeformable DeTr - iterative bounding
box refinement: This version gets inspiration from
iterative refinement methods seen in optical flow es-
timation, where each decoder layer iteratively refines
bounding boxes using predictions from the preceding
layer, resulting in improved detection performance.
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• DD-TS or Deformable DeTr - two stage: This ver-
sion is influenced by two-stage object detection meth-
ods, in which region proposals generated in an initial
stage is utilized as object queries within the decoder
for additional refinement, leading to a two-stage De-
formable DeTr.

4. Effect of changing attack parameters
Impact of Locations of Patches. Fig. 1 demonstrate the
attack performance with respect to the locations of the
patches. For all of the attacks, we either distributed the
patches uniformly or randomly over the image or video
frame. The source and target patches were distributed
separately, and in the case of uniform distribution, we
ensured non-overlap between them by applying a slight
offset. We observe that uniform distribution performs
better than random distribution, as it guarantees equal
accessibility of the patches across the entire frame.
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Figure 1. Impact of patch location

Impact of a Source Aggregator. We explored a case
where multiple source patches are placed at various
locations. Instead of developing patches specific to each
location, our aim was to design a universal patch effective
from any of these locations. This approach has real-world
implications for the practicality of these attacks. For
instance, a single generic patch, like one printed on a
T-shirt, could deceive the model if positioned in different
areas of a scene or if the same patch appears at different
locations in different cameras in a multi-view scenario.
We designed two different gradient aggregator; (1) Mean:
takes the average of the gradients, and (2) Max-norm: takes
the gradients with the highest L2-norm. In our experiments
(see Fig. 2), using an aggregator do not affect attack
performance and is equally effective as collecting gradients
individually.
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Figure 2. Impact of source aggregator

Impact of Patch Count in MVDeTr In this experiment,
we implemented our CP attack to evaluate the effect of
number of patches on attack performance. Also, all the
patches used in this experiment were 32x32. In the CP(4tar)
setup, we placed target patches in four views (from view 4
to 7). Subsequently, we systematically added one source
patch to each of the views, starting with view 0. Similarly,
in the CP(4src) setup, we first placed source patches in four
views and then incrementally added target patches. For the
CP(7tar) and CP(7src) setups, as opposed to four views, we
placed target/source patches in all seven views respectively,
before introducing patches of the other type. As shown in
Fig. 3, the attacks successfully compromised the system
even when the source and target views were disjoint (for
instance, CP(4tar) and CP(4src) with patches of other type
in views 1 to 3). In CP(7tar) and CP(7src) setup, the attacks
were extremely effective, reducing the Multi-view Object
Detection Accuracy (MODA) to 0%.
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Figure 3. Patch count (multi-view)

Impact of Patch Size in MVDeTr In this experiment, we
executed both SP and CP attacks to evaluate the effect of
patch size on attack performance. Also, we limited the
adversarial access to only three cameras. Like before, in
the SP attack, each adversarial camera was equipped with
a single patch. In contrast, the CP attack involved two
patches per camera, one source and one target. Further-
more, we explored two variations within the CP attack. In
the CP(tar) setup, we increased the size of the target patch
while keeping the source patch size constant (32x32), and
in the CP(src) setup, we enlarged the source patch while the
target patch size remained the same (32x32). As depicted
in Fig. 4, the effectiveness of the attacks increased with the
size of the patches.
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Figure 4. Patch size (multi-view)

Effect of Constant Adversarial Pixel Count in MVDeTr
In this experiment, as the number of adversarial cameras
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Figure 5. Impact of constat adversarial pixel count

increases, the total number of adversarial pixels remains
constant. For instance, in the SP attack, when all cameras
are compromised, each camera uses a 46x46 patch. How-
ever, when only one camera is compromised, the patch is
scaled up to 120x120 to maintain the same total number
of adversarial pixels. Similarly, for the CP attack, patch
sizes are adjusted to match the total adversarial pixel count
of the SP attack. We observe that although the number of
adversarial pixels are constant across all experiments, due
to the dependency on number of source and target patch
count, we have a more effective attack when there are more
patches in the attack (as shown in Fig. 5).

5. Effect of PCGrad
In all of our attacks, we perform some sort of multi-task

learning. For example, in all of the attacks we maximize
the pointer loss Lin (Eqn. 6) or Lout (Eqn. 8) and atten-
tion loss Latt using the source patch. Specially, in our SP
attack (source and target patches are the same), in addition
to these losses we also maximize the model loss Lmodel on
the same patch. In such multi-task learning cases, it is com-
mon for the gradient of different losses to interfere with one
another, and cause the learning to be inefficient. Existing
solution proposes a technique known as gradient surgery
PCGrad [23], which involves projecting the gradient of a
task onto the normal plane of the gradient of any other task
that possesses a gradient. We utilize this method in all of
our attacks where there is multi-task learning involved. This
ensures our attacks converge faster, however, our attacks do
not rely on PCGrad for its effectiveness. Fig. 6 shows the
training curve of attack performance with and without PC-
Grad.

6. Effectiveness of whole-image noise
Previous literature [3, 17, 18] already investigated the

effect of whole-image constrained noises on transformer-
based vision models. These works concluded that owing
to the unique relation modeling capabilities of transformer
architecture these types of attacks are not as effective as
in CNN-based models. We further investigate the impact
of whole-image noise on our target model Deformable De-
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Figure 6. AP comparison over epochs with and without PCGrad

Trs [24], confirming the findings consistent with previous
studies. In Tab. 1 we present the performance of whole-
image noise under different L2 and L∞ constraints. We
standardize our input images, setting their mean value to
(0.485, 0.456, 0.406) and their standard devia-
tion to (0.229, 0.224, 0.225). We find that, within
a noise budget that does not induce occlusion, the model
performance is unaffected (AP on clean sample is 50%)
with whole-image noise.

ϵ = 8
255 ϵ = 16

255 ϵ = 32
255 ϵ = 64

255 ϵ = 128
255 ϵ = 255

255

L2 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%
L∞ 50.0% 50.0% 50.0% 46.9% 36.5% 17.1%

Table 1. AP under whole-image attacks

7. Perceptibly of our patches
In all of our attacks, altering less than 1% of the patched

area in the input field severely impacts model performance.
When the adversarial patch is placed on test images, it can
be barely visible in the resulting images, and can pass as
a faint camera flicker, or a minuscule pattern printed on a
surface (e.g. T-shirt, signboard, etc.). For example, Fig. 7
illustrates two instances of clean and patched image-pairs,
with a source patch at (400, 400) and a target patch at
(100, 100). In this experiment, we took two 32x32
patch, but this attack can be realized with a 16x16 or even
a 8x8 patch, making the patches almost imperceptible.
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Figure 7. Comparison of clean and adversarial images. The
patches are less than 1% of the total area.



8. Illustration of attack on Deformable DeTr
All of the attacks have a catastrophic effect on the bounding-box results of Deformable DeTr. In the detection results of a
patched image, most often bounding boxes are totally absent (no objects found). In Fig. 8 and 9, we present the bounding-box
results on clean and adversarial images using SP and CP attacks respectively.
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Figure 8. Bounding box comparison among ground-truth, clean images, and adversarial images in SP attack.
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Figure 9. Bounding box comparison among ground-truth, clean images, and adversarial images in CP attack.



9. Illustration of attack on MVDeTr
Our attacks also demonstrate excellent effectiveness against MVDeTr, leading to a complete disruption in the bounding-box
results. In the detection outcomes across all seven views, we consistently observe either the absence of bounding boxes
around objects or misaligned boxes appearing in random areas of the images. This underscores the impact of our attacks on
both object classification and localization tasks in object detection. In Fig. 10 and 11, we present the bounding-box results
on ground-truth and adversarial in all seven views using SP and CP attacks respectively.
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Figure 10. Bounding box comparison among seven cameras in clean and adversarial in SP attack.
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Figure 11. Bounding box comparison among seven cameras in clean and adversarial in CP attack.



10. Illustration of attention heatmap in Deformable DeTr
In addition to the figure in Introduction (Sec. 1), we also show heatmap of sparse attention for two additional im-
ages using our SP and CP attack in Fig. 12 and 13. As previous, the top and the bottom row shows the di-
rections and the values of sparse attention respectively, across the tokens of the image with respect to the targeted
area (marked in red). As the attack progresses (left to right), there is a noticeable increase in the amount of at-
tention being redirected towards the targeted area, along with a rise in the attention values for both of our attacks.
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Figure 12. Directions and values of attention focused toward the target patch for SP attack
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Figure 13. Directions and values of attention focused toward the target patch for CP attack



11. Illustration of ground-plane heatmap in MVDeTr
In addition to the figure in Evaluation (Sec. 4), we also show the heatmap of the ground plane of the shared world space
in MVDeTr using all four of our attacks in Fig. 14. The points in the ground plane represent the top-view position of the
objects in multi-view detection. We observe that for our SP and CP attacks the heatmap is significantly different from the
ground-truth or clean heatmap. With a patch of adequate size, the impact of our attacks on the ground-plane heatmap is
readily apparent.

Figure 14. Ground plane heatmap of the shared world space in MVDeTr
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