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Appendix A. Proofs
In Section 3 of the manuscript, our model seeks to represent input images using discriminative prototypes that are com-

plementary. To ensure their complementarity, we minimize the mutual information (MI) between the data distributions of
each pair of prototypes using a contrastive loss between feature representations of the different prototypes. To improve the
discrimination, the prototype representations encode ID-related information by maximizing the MI between the joint distri-
bution among all prototypes in the label distribution space. In this section, we prove that by minimizing the cross-entropy loss
between features of each prototype class and the person ID in images, we can learn discriminative prototype representations.

A.1. Maximizing MI(P 1, . . . , PK ;Y )

This section provides a proof that MI(P 1, . . . , PK ;Y ) (Eq. 10) can be lower-bounded by :

MI(P 1;Y ) + · · ·+ MI(PK ;Y ), (A.1)

following the properties of mutual information.
P.1 (Nonnegativity) For every pair of random variables X and Y :

MI(X;Y ) ≥ 0 (A.2)

P.2 For every pair random variables X , Y that are independent:

MI(X;Y ) = 0. (A.3)

P.3 (Monotonicity) For every three random variables X , Y and Z:

MI(X;Y ;Z) ≤ MI(X;Y ) (A.4)

P.4 For every three random variables X , Y and Z, the mutual information of joint distortions X and Z to Y is:

MI(X,Z;Y ) = MI(X;Y ) + MI(Z;Y )−MI(X;Z;Y ) (A.5)

MI(P 1, . . . , PK ;Y ). (A.6)

Theorem 1 Let P 1, . . . , PK and Y be random variables with domains P1, . . . ,PK and Y , respectively. Let every pair P k

and P q (k ̸= q) be independent. Then, maximizing MI(P 1, . . . , PK ;Y ) can be approximated by maximizing the sum of MI
between each of P k to Y ,

∑K
k=1 MI(P k;Y ).
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Proof 1 First, we define P̃ k as the joint distribution of P k+1, . . . , PK . Using the P.4 we have:

MI(P 1, P̃ 1;Y ) = MI(P 1;Y )︸ ︷︷ ︸
α

+MI(P̃ 1;Y )︸ ︷︷ ︸
β

−MI(P 1; P̃ 1;Y )︸ ︷︷ ︸
γ

, (A.7)

To maximize this, α and β should be maximized and γ minimized. Given P.3, minMI(P 1; P̃ 1;Y ) can be upper-bounded by
minMI(P 1; P̃ 1):

MI(P 1; P̃ 1;Y ) ≤ MI(P 1; P̃ 1), (A.8)

So by minimizing the right term of Eq. A.8, γ is also minimized. We show that MI(P 1; P̃ 1) = 0 by expanding P̃ 1 to (P 2, P̃ 2):

MI(P 1;P 2, P̃ 2) = MI(P 1;P 2) + MI(P 1; P̃ 2)−MI(P 1;P 2; P̃ 2). (A.9)

Given P.1 and Eq. 3, MI(P 1;P 2) = 0 and MI(P 1;P 2; P̃ 2) ≤ MI(P 1;P 2) = 0 so that:

MI(P 1;P 2, P̃ 2) = MI(P 1; P̃ 2). (A.10)

After recursively expanding P̃ 2:
MI(P 1;P 2, P̃ 2) = 0. (A.11)

To maximize β, we can rewrite and expand recursively in Eq. A.7 :

MI(P̃ 1;Y ) = MI(P 2, P̃ 2;Y ) = MI(P 2;Y )︸ ︷︷ ︸
maximizing

+MI(P̃ 2;Y )︸ ︷︷ ︸
expanding

−MI(P 2; P̃ 2;Y )︸ ︷︷ ︸
0

. (A.12)

Therefore, it can be shown that:

MI(P̃ k;Y ) = MI(P k+1, P̃ k+1;Y ) = MI(P k;Y ) + · · ·+ MI(PK ;Y ) ∀k ∈ {0, . . . ,K − 1}. (A.13)

and for k = 0, we have:

MI(P 1, . . . , PK ;Y ) =

K∑
k=1

MI(P k;Y ), (A.14)

Finally, for maximizing MI(P 1, . . . , PK ;Y ), we need to maximize each MI(P k;Y ) so that each prototype feature contains
Id-related information and is complemented. In other words, each prototype seeks to describe the input images from different
aspects.

A.2. Maximizing MI(P k;Y )

In Section 3, the MI between the representation of each prototype and the label of persons are maximized by minimizing
cross-entropy loss (see Eq: 11 of the manuscript). This approximation is formulated as Proposition 1.

Figure A.1. Venn diagram of theoretic measures for three variables X , Y , and Z, represented by the lower left, upper, and lower right
circles, respectively.



Proposition 1 Let P k and Y be random variables with domains Pk and Y , respectively. Minimizing the conditional cross-
entropy loss of predicted label Ŷ , denoted byH(Y ; Ŷ |P k), is equivalent to maximizing the MI(P k;Y )

Proof 2 Let us define the MI as entropy,
MI(P k;Y ) = H(Y )︸ ︷︷ ︸

δ

−H(Y |P k)︸ ︷︷ ︸
ξ

(A.15)

Since the domain Y does not change, the entropy of the identity δ term is a constant and can therefore be ignored. Maximizing
MI(P k, Y ) can only be achieved by minimizing the ξ term. We show that H(Y |P k) is upper-bounded by our cross-entropy
loss (Eq. 11), and minimizing such loss results in minimizing the ξ term. By expanding its relation to the cross-entropy [1]:

H(Y ; Ŷ |P k) = H(Y |P k) +DKL(Y ||Ŷ |P k)︸ ︷︷ ︸
≥0

, (A.16)

where:
H(Y |P k) ≤ H(Y ; Ŷ |P k). (A.17)

Through the minimization of Eq. 11, training can naturally be decoupled in 2 steps. First, weights of the prototype module
are fixed, and only the classifier parameters (i.e., weight W k of the fully connected layer) are minimized w.r.t. Eq. A.16.
Through this step, DKL(Y ||Ŷ |P k) is minimized by adjusting Ŷ while the H(Y |P k) does not change. In the second step, the
prototype module’s weights are minimized w.r.t. H(Y |P k), while the classifier parameters W k are fixed.



Appendix B. Additional Details on the proposed method

B.1. Training Algorithm

To train the model, BMDG uses a batch of data containing Nb person with Np positive images from the V and I modalities.
Algorithm 1 shows the details of the BMGD training strategy for optimizing the feature backbone by gradually increasing
mixing prototypes.

At first, the prototype mining module extracts K prototypes from infrared and visible images in lines 4 and 5 . Then,
at lines 6 and 7, G function mixes these prototypes from each modality to create two intermediate features. It is noted
that the ratio of mixing gradually increases w.r.t the step number t to create more complex samples. To refine the final
feature descriptor for input images, the attentive embedding module, F , is applied to prototypes to leverage the attention
between them. At the end of each iteration, the model’s parameters will be optimized by minimizing the cross-modality
ReID objectives between each modality features vector and its gradually created intermediate.

Algorithm 1 BMDG Training Strategy.

Require: S = {V, I} as training data and T,K as hyper-parameters
1: for t = 1, . . . , T do ▷ over T steps
2: while all batches are not selected do
3: xj

v, x
j
i ← batchSampler(Nb, Np)

4: extract prototypes Aj
v and global features gj

v from visible images vj ▷ left-side of Fig. 2(a)
5: extract prototypes Aj

i and global features gj
i from infrared images ij ▷ left-side of Fig. 2(a)

6: A
(t)
v ← G(Aj

v,A
j
i , t) ▷ V intermediate by gradually increasing the mixing ratio w.r.t t from I prototypes

7: A
(t)
i ← G(A

j
i ,A

j
v, t) ▷ I intermediate by gradually increasing the mixing ratio w.r.t t from V prototypes

8: if t ≤ T then:
9: f

(t)
v ← [F(A(t)

v );gv] ▷ embedding intermediate visible features
10: f

(t)
i ← [F(A(t)

i );gi] ▷ embedding intermediate infrared features
11: else:
12: f

(t)
v ← [F(Aj(t)

v );gi]

13: f
(t)
i ← [F(A(t)

i );gv]
14: end if
15: update model’s parameters by optimizing Eq. 19
16: end while
17: end for

B.2. Attentive Prototype Embedding

Details of the Attentive Prototype Embedding module are depicted in B.1.

Figure B.1. Attentive prototype embedding (APE) architecture.



Appendix C. Additional Details on the Experimental Methodology
C.1. Datasets:

Research on cross-modal V-I ReID has extensively used the SYSU-MM01 [7], RegDB [6], and recently published LLCM
[?] datasets. SYSU-MM01 is a large dataset containing more than 22K RGB and 11K IR images of 491 individuals captured
with 4 RGB and 2 near-IR cameras, respectively. Of the 491 identities, 395 were dedicated to training, and 96 were dedicated
to testing. Depending on the number of images in the gallery, the dataset has two evaluation modes: single-shot and multi-
shot. RegDB contains 4,120 co-located V-I images of 412 individuals. Ten trial configurations randomly divide the dataset
into two sets of 206 identities for training and testing. The tests are conducted in two ways – comparing I to V (query) and
vice versa. An LLCM dataset consists of a large, low-light, cross-modality dataset that is divided into training and testing
sets at a 2:1 ratio.

C.2. Experimental protocol:

We used a pre-trained ResNet50 [3] as the deep backbone model. Each batch contains 8 RGB and 8 IR images from 10
randomly selected identities. Each image input is resized to 288 by 144, then cropped and erased randomly, and filled with
zero padding or mean pixels. ADAM optimizer with a linear warm-up strategy was used for the optimization process. We
trained the model by 180 epochs, in which the initial learning rate is set to 0.0004 and is decreased by factors of 0.1 and 0.01
at 80 and 120 epochs, respectively. K = 6, T = 4, λf = 0.1, λv = 0.05, λp = 0.2 and λi = 0.4 are set based on the analyses
shown in the ablation study in the main paper and in Section D.1. λeq = 0.5 is for all experiments.

C.3. Performance measures:

We use Cumulative Matching Characteristics (CMC) and Mean Average Precision (mAP) as assessment metrics in our
study. In CMC, rank-k accuracy is measured to determine how likely it is that a precise cross-modality image of the person
will be present in the top-k retrieved results. As an alternative, mAP can be used as a measure of image retrieval performance
when multiple matching images are found in a gallery.

Appendix D. Additional Quantitative Results
D.1. Hyperparameter values:

This subsection analyzes the impact of λf, λv, λp, and λi on V-I ReID accuracy. We initially set λv = 0.01, λp = 0.05,
and λi = 0.8, experimenting with various values for λf. As shown in Fig. D.1, accuracy improves with increasing λf until
it reaches 0.1. Elevated λf enhances prototype diversity, boosting the discriminative ability of final features in the diverse
space. However, excessively high values disperse prototype features in the feature space, diminishing discriminability and
hindering accurate identification.

Similar trends are observed when λp = 0.05 and λi = 0.8, varying λv from 0.01 to 0.05, resulting in improved per-
formance. Higher λv compresses prototype regions excessively, lacking sufficient ID-related information. Conversely, λi

enhances the discriminative capabilities of prototypes in images. Balancing these factors, we find optimal values of 0.05 and
0.4 for λv and λi, respectively. Additionally, based on experimentation, we set λp = 0.2 at the end of our analysis.

(a) λf. (b) λv. (c) λi. (d) λp.

Figure D.1. Accuracy of the proposed BMDG over λf, λv, λi, and λp values on SYSU-MM01 dataset in all-search and single-shot mode.

D.2. Step size and number of part prototypes:

In section 4.2, we discussed the step size and number of part prototypes based on Rank-1 accuracy. Here we report the
mAP measurement for Table 4 in paper in Table D.1a and Table ?? in paper in Table D.1b, respectively:



Table D.1. mAP accuracy of BMDG using (a) our prototype mixing and (b) Mixup [9] setting for different numbers of part prototypes (K)
and intermediate steps (T ).

(a) Prototype exchanging

T
Number of part prototypes (K)

3 4 5 6 7 10
0 65.98 67.03 67.23 68.11 67.55 65.66
1 67.42 68.72 69.28 69.46 68.32 69.28
2 69.51 70.08 70.72 71.14 69.97 71.25
3 71.44 71.69 71.82 72.02 71.06 71.67
4 - 71.98 72.15 72.86 71.19 69.00
6 - - - 72.40 71.17 69.54

10 - - - - - 69.46

(b) Mixup [9]

T
Number of part prototypes (K)

3 4 5 6 7 10
0 65.98 67.03 67.23 68.11 67.55 65.66
1 66.31 67.22 67.31 68.28 68.5 65.8
4 66.50 67.68 67.79 68.52 68.49 65.88
6 66.98 67.77 68.05 68.73 68.56 66.02

10 67.04 67.60 67.93 68.65 68.54 65.57

D.3. Model efficiency:

Our BMDG proposed a method to extract alignable part-prototypes in feature extraction and then compute an attention
embedding for the final representation features. In Table D.2, we showed each component size and time complexity in the
inference time compared to the baseline we used.

Table D.2. Number parameters and floating-point operations at inference time for BMDG and all its sub-modules.

Model # of Para. (M) Flops (G)
Feature Backbone 24.8 5.2
Prototype Mining 3.1 0.2
Attentive Prototype Embedding 1.8 0.3
baseline [8] 24.9 5.2
BMDG 29.7 5.7

Appendix E. Visual Results
E.1. UMAP projections:

To show the effectiveness of BMDG, we randomly select 7 identities from the SYSU-MM01 dataset and project their
feature representations using the UMAP method [5] for (a) Baseline, (b) one-step (prototypes without gradual training),
and (c) BMDG. Visualization results (Figure E.1) show that compared with the baseline and one-step approach, the feature
representations learned with our BMDG method are well clustered according to their respective identity, showing a strong
capacity to discriminate. BMDG is effective for learning robust and identity-aware features. Our BMDG method reduces
this distance across modalities for each person and provides more separation among samples from different people.

Also, to show how the intermediate features gradually mix the modalities, we draw intermediate features for 6 steps in
Figure E.2. At the beginning of training, the features are based on modality while at step 6, the features are concentrated on
each identity.

E.2. Domain shift:

To estimate the level of domain shift over data from V and I modalities, we measured the MMD distance for each training
epoch. To this end, for each epoch, we selected 10 random images from 50 random identities and extracted the prototype
and global features, then measured the MMD distance between the centers of those features for each modality as shown in
Fig. E.3(b). We report the normalized MMD distances between I and V features for our BMDG approach when compared
with the baseline. Our method reduces this distance more than the y baseline. Thus, the results show that the intermediate
domains improve the model robustness to a large multi-modal domain gap by gradually increasing the mix in prototypes over
multiple steps.

E.3. Part-prototype masking:

To show spatial information related to prototype features, we visualize the score map in the PM module (see Fig. E.4).
Our approach encodes prototype regions linked to similar body parts without considering person identity. Our model tries to



(a) Baseline. (b) One Step. (c) BMDG.

Figure E.1. Distributions of learned V and infrared features of 7 identities from SYSU-MM01 dataset for (a) the baseline, (b) one-step
using part-prototypes, and (c) our BMDG method by UMAP [5]. Each color shows the identity.

(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5. (f) Step 6.

Figure E.2. Distributions of learned V and infrared features of 7 identities from SYSU-MM01 dataset in training for 6 steps at epochs of
10,30,50,70,90 and 160 respectively by UMAP [5]. Each color shows the identity. The intermediate features are drawn with lower opacity.

find similar regions for each class of prototypes and then extracts ID-related information for that region. Therefore, BMDG
is more robust for matching the same part features.



(a) Learning Curve. (b) BMDG.

Figure E.3. The mAP and domain shift (MMD distance) between I and V modalities over training epochs. (a) The learning curve of BMDG
vs Baseline [8]. (b) MMD distance over the center of multiple person’s infrared features to visible modality.

(a) Infrared. (b) Visible.

Figure E.4. Prototypes regions extracted by the PRM module for (a) infrared and (b) visible images. Note that the mask size is 18×9,
which is then resized to fit the original input image. As shown, the mask of prototypes focuses on similar body parts without accounting
for identity.

E.4. Semi-supervised body part detection:

An additional benefit of our HCL module lies in its ability to detect meaningful parts in a semi-supervised manner. By
forcing the model to identify semantic regions that are both informative about foreground objects and contrastive to each
other, our hierarchical contrastive learning provides robust part detection, even in the absence of part labels. To assess HCL,
we fine-tuned our ReID model as a student using a pre-trained part detector [4] on the PASCAL-Part Dataset [2] as the
teacher. In Fig. E.5, the results show our model’s strong capacity for detecting body parts compared to its teacher.



(a) Infrared. (b) Visible.

Figure E.5. Semi-supervised part discovery on the SYSU-MM01 dataset. The first columns are the (a) infrared and (b) visible images. The
second column images are the result from [4], and the last column are results with our fine-tuned model in BMDG.
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