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The supplementary material provides a comprehensive
analysis of the STLight method. Each section contributes
unique insights:

In Section A, we extend our evaluation by comparing
our model with results from others published STL papers,
against longer training duration, and presenting an ablation
study on the impact of varying training hyperparameters.

In Section B, we analyze STLight’s complexity, breaking
down its components and parameter counts.

Section C explores optimal kernel sizes for STLight’s
convolutional stages.

In Section D, we investigate the impact of weight initial-
ization schemes on training stability.

Section E focuses on optimal training settings.
In Section F, we compare decoding operations’ impact

on model stability and performance.
Finally, Section G presents the full STLight implemen-

tation.

A. Additional Evaluation Results

In Section 4, we used the OpenSTL benchmark to com-
pare our results with public and reproducible outcomes on
established benchmark datasets. However, public libraries
like OpenSTL do not fully guarantee (1) the correctness of
the implementations, (2) the adherence to the original train-
ing protocols of each baseline, or (3) the optimality of the
default standard training parameters used for learning.

Thus, in this section, we address these limitations.
In Table 1, we compare our model with results published

in the literature for relevant STL models on the MMNIST,
TaxiBJ, and KTH datasets. While all baseline results in
Table 3 are obtained under uniform training settings and
protocols, Table 1 lacks this standardization. Given that
each model in Table 1 is trained for different (and not al-
ways reported) durations, we trained our STLight baseline

using the same hyperparameters as in Table 2, but with ex-
tended training durations: 2000 epochs for MMNIST and
150 epochs for KTH. Our model still outperforms the other
baselines, confirming the OpenSTL benchmark results from
Table 3.

Table 1. Comparison of our model results and the results published
for each model in literature Across MMNIST, TaxiBJ and KTH
datasets. Our model have been trained using hyperparameters of
Table 2, except for the training duration that have been extended
to 2000 epochs for MMNIST and 150 epochs for KTH.

Model MMNIST (MSE ↓) TaxiBJ (MSE ↓) KTH (SSIM ↑)
10 → 20

ConvLSTM [6] 103.3 48.5 0.712
VPTR-NAR [13] 107.2 - 0.859
VPTR-FAR [13] 63.6 - 0.879
PredRNN [10] 56.8 46.4 0.839
PredRNN++ [8] 46.5 44.8 0.865
MIM [12] 44.2 42.9 -
E3D-LSTM [9] 41.3 43.2 0.879
MAU [1] 29.5 - -
PhyDNet [3] 24.4 41.9 -
Crevnet [14] 22.3 - -
PredRNNv2 [11] 48.8 - -
IAM4VP [5] 15.3 37.2 -
TAU [7] 19.8 34.4 0.911

STLight-L (Ours) 14.72 30.87 0.9113

In Table 2, we extend our model evaluation to the
2000-epoch OpenSTL MMNIST results. Notably, our
model corroborates the findings discussed in Section 4.2.1,
demonstrating superior performance and efficiency com-
pared to the OpenSTL baselines across both accuracy and
computational metrics. Specifically, even with extended
training time, STLight-L achieves the best trade-off be-
tween accuracy and computational cost, with a significantly
lower MSE (14.77) and MAE (47.17), while maintaining
a high SSIM (0.9686). As discussed in Section 4.2.1,
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our model continues to outperform recurrent architectures
like PredRNN++ and MIM in accuracy while requiring
fewer FLOPs, and recurrent-free architectures like TAU and
SimVP with fewer parameters, establishing STLight-L as
both a highly performant and resource-efficient solution.

Table 2. Quantitative results comparing our model (STLight-L)
against OpenSTL baselines, trained for 2000 epochs using the
training settings from Table 2. The table reports both accuracy
metrics (MSE, MAE, SSIM) and computational metrics (number
of parameters, FLOPs) under equivalent training and evaluation
conditions on the MMNIST dataset

Model # Params FLOPs MSE MAE SSIM

ConvLSTM-S 15.0M 56.8G 22.41 73.07 0.9480
PredNet 12.5M 8.6G 31.85 90.01 0.9273
PhyDNet 3.1M 15.3G 20.35 61.47 0.9559
PredRNN 23.8M 116.0G 26.43 77.52 0.9411
PredRNN++ 38.6M 171.7G 14.07 48.91 0.9698
MIM 38.0M 179.2G 14.73 52.31 0.9678
MAU 4.5M 17.8G 22.25 67.96 0.9511
E3D-LSTM 51.0M 298.9G 24.07 77.49 0.9436
PredRNN.V2 23.9M 116.6G 17.26 57.22 0.9624
SimVP+IncepU 58.0M 19.4G 21.15 64.15 0.9536
TAU 44.7M 16.0G 15.69 51.46 0.9721

STLight-L (Ours) 32.9M 32.9M 14.77 47.17 0.9686

B. STLight method complexity

To analyze the complexity of the STLight method, we’ll
break down its main components: Spatio-Temporal Patches,
Patch Shuffle and Reassemble, and the Repeated STLMixer
setup. By examining the number of parameters each part
uses, we can gain insights into the method’s design and its
computational demands.

• Spatio-Temporal Patches STLight encodes the input
frames with a parameter count of O

(
(TC) · d · k2E

)
because it uses a single convolution, with input chan-
nels, output channels and kernel size equal to T ·C, d,
kE respectively.

• Patch Shuffle and Reassemble While the patch shuf-
fle layer doesn’t have any learnable parameters, the
patch reassemble is based on a single pointwise con-
volution with input channels, output channels and ker-
nel size respectively equal to d/p2, T ′ · C, kD =
1. Therefore STLight decodes the processed signals
with a parameter count of O

(
d/p2 · (T ′C) · k2D

)
=

O
(
d/p2 · (T ′C)

)
.

• Repeated STLMixer The parameter count
from our proposed STLMixer architecture is
O
(
de · (d2 + d · k2T1

+ d · k2T2
)
)
. In fact, each

kT1/kT2 3 5 7 9 11

3 24.16 22.48 22.33 22.33 22.75
5 24.01 22.67 22.45 22.78 23.03
7 23.75 22.83 22.88 23 24
9 23.45 23.02 23.1 23.38 23.62
11 23.04 23.14 23.24 23.65 24.51

Table 3. STLight MSE comparison for different values of kT1 and
kT2 .

STLMixer is composed of two depthwise con-
volutions and one pointwise convolutions. Each
convolution has the same input channels and output
channel dimensions that are equal to d. Depth-
wise convolutions perform group convolution with
group size = d, hence their parameter counts are
O(d · k2T1

) and O(d · k2T2
). The pointwise convolution

has 1 × 1 kernel size, so the parameter count for
this layer is O(d2). Summing the three terms and
considering that they are de repeated blocks inside
STLight, we obtain the aforementioned complexity.

In order to simplify the parameter count formulas, we con-
sider the following assumptions:

1. T · C and T ′ · C typically remain below 10, while d
often exceeds 1000, hence T ·C ≪ d and T ′ ·C ≪ d.
Similarly k2T1

≪ d and k2T2
≪ d.

2. O ≤ 2 and p ≤ 2, leading to kE = p · max(1, O) ≤ 4
using the formula shown in Section 2.1.

Therefore the parameter counts of our encoder and decoder
blocks scale linearly with respect to d, while the parameters
count of the repeated STLMixer blocks can be expressed as
O(de · d2).

C. Optimal kT1 and kT2

This section explores the optimal kernel sizes kT1
and

kT2
for the two depthwise convolutional stages within the

STLMixer block. While large values for kT1
and kT2

en-
sure good local context and wider receptive field, they also
increase the model’s parameter count, possibly leading to
worse performances due to overfitting. Our experiments,
detailed in Figure 3, show that a small kT1

= 3 combined
with a larger kT2

∈ {5, 7} achieves optimal performance
while maintaining a lower parameter count. They also in-
dicate that excessively large kernel sizes not only decrease
efficiency but also lead to poorer performance. Given the
consistency of these findings across various hyperparame-
ters configurations and scenarios, we decided to keep kT1

and kT2
constant during our evaluations.



D. Weight initialization

Initial weight settings are crucial for how quickly and
effectively a deep learning model learns. In our study, we
compare three different initializations:

• Kaiming-Uniform Following PyTorch’s default
weight initialization, we use uniform Kaiming initial-
ization (also known as He initialization) [4] for all the
model’s convolutional blocks.

• Kaiming-Normal As reported in Listing 1, we initial-
ize convolutional layers using gaussian Kaiming ini-
tialization.

• Hybrid We initialize the patch reassemble layer us-
ing the uniform Kaiming initialization and we initial-
ize all the other layers following the approach men-
tioned in the Kaiming-Normal initialization. We hy-
pothesize that the last layer requires a different initial-
ization because it rearranges the shuffled patches and,
unlike other layers, it is not responsible for processing
spatial-temporal correlations.

1def _init_weights(self, m):
2 if isinstance(m, nn.Conv2d):
3 nn.init.kaiming_normal_(
4 m.weight,
5 mode=’fan_out’,
6 nonlinearity=’relu’
7 )
8 if m.bias is not None:
9 nn.init.constant_(m.bias, 0)

Listing 1. Code for the Kaiming-Normal weights initialization.

In Figure 1 we emphasize the importance of carefully
selecting initial weight settings to guarantee stable training
and reach optimal accuracy, by evaluating the three different
initialization schemes mentioned above.

Our experiments show that the Kaiming-Uniform initial-
ization requires several epochs to stabilize before beginning
to converge, while the all Kaiming-Normal approach does
not lead to stable training.

The optimal strategy is the Hybrid initialization, which
leads to stable training while not requiring a number of ini-
tial epochs to stabilize.
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Figure 1. Learning curve comparison for three different weights
initializations. For each of them, we report the mimimum and
maximum boundaries of the MSE out of 5 runs.

E. Optimal Training Settings

In Tables 4 and ??, we evaluate the impact of various
training hyperparameters on the performance of STLight-L
on the MMNIST dataset to identify the most effective train-
ing hyperparameter configuration. The learning rate is a
critical hyperparameter that influences the model’s ability
to learn from data while maintaining stability. A low learn-
ing rate leads to slow convergence, while a higher learning
rate may cause instability, preventing convergence to opti-
mal results [2]. The final div factor determines the mini-
mum learning rate achieved at the end of a training cycle
with the OneCycleLR learning rate scheduler, influencing
convergence behavior and model performance. We examine
the effects of varying the learning rate (LR) and the num-
ber of training epochs on key metrics such as MSE, MAE,
and SSIM. Tables 4 and ?? show that the default OpenSTL
hyperparameters are highly effective for STLight-L, with
potential improvements of 0.5 in MSE when using a learn-
ing rate of 0.003 instead of 0.001. In fact, in the first sec-
tion of the table, we observe that reducing the learning rate
from 0.003 to 0.0003 results in increased MSE and MAE,
indicating that overly small learning rates hinder model per-
formance. Conversely, increasing the learning rate to 0.01
leads to worse results, confirming that the optimal learning
rate lies near 0.003. Table 4 also shows that extending the
number of training epochs improves all accuracy metrics,
confirming that longer training durations significantly en-
hance model performance.



Table 4. Ablation Study on STLight-L with Fixed Hyperpa-
rameters (dim=1400, depth=16, kernel size 1=3, kernel size 2=7,
patch size=2) and Varying Training Learning Rate, and the Num-
ber of Epochs

LR Final Div Epoch MSE MAE SSIM

↑ Varying Learning Rate (LR)

0.0003 10000 200 27.42 76.86 0.937
0.001 10000 200 22.28 66.11 0.950
0.003 10000 200 21.80 64.90 0.951
0.01 10000 200 38.47 90.42 0.939

↑ Varying Number of Epochs (Epoch)

0.001 10000 500 18.88 58.59 0.957
0.001 10000 1000 17.89 54.25 0.962
0.001 10000 2000 14.77 47.17 0.969

FinalDivFactor/lr 0.0003 0.001 0.003 0.01

1000 26.04 22.41 22.01 35.99
3000 27.14 22.49 21.85 38.35
10000 27.42 22.33 21.8 38.47

Table 5. STLight-33M MSE comparison for different values of
Learning Rate (lr) and FinalDivFactor.

F. Order of the decoding operations
We investigate the optimal procedure for decoding the

tensor Z ′′
T ∈ RB×d×H/p×W/p into the desired tensor of the

predicted frames B′
T ′ . We evaluated two choices:

• Shuffle-Reassemble We first perform patch shuffle,
obtaining a tensor of shape B × d/p2 ×H ×W . Sub-
sequently, the tensor is reassembled using a 1× 1 con-
volutional layer, with d/p2 input channels and T ′ · C
output channels.

• Reassemble-Shuffle We first perform patch rearrange,
using a 1×1 convolutional layer, with d input channels
and T ′ · C · p2 output channels, obtaining an interme-
diate tensor of shape B × (T ′ ·C · p2)×H/p×W/p.
Subsequently, we perform patch shuffle on the inter-
mediate tensor, obtaining B × (T ′ · C)×H ×W .

Both choices are able to effectively decode the output
stage. In Figure 2, we train STLight for different config-
uration settings and we report the standard deviation of the
differences in loss values between consecutive epochs (“dis-
persion”) to get a measure of how much variation we get in
the loss reduction. The figure clearly illustrates that Shuffle-
Reassemble notably curtails the feature dispersion. This ad-
justment leads to an uptick in model performance and pro-
motes stability.
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Figure 2. Dispersion vs Number of parameters on different decod-
ing operations order

G. STLight Code
We report the full implementation of the STLight model.

We encourage readers to use STLight through our OpenSTL
implementation which will be publicly available.



1import torch
2import torch.nn as nn
3
4class Residual(nn.Module):
5 def __init__(self, fn):
6 super().__init__()
7 self.fn = fn
8
9 def forward(self, x):

10 return self.fn(x) + x
11
12def STLMixer(dim, K_1, k_2):
13 return nn.Sequential(
14 Residual( # depthwise convolution block
15 nn.Sequential(
16 nn.Conv2d(dim, dim, K_1, groups=dim, padding="same"),
17 nn.Conv2d(dim, dim, K_2, groups=dim, padding="same",
18 dilation=3),
19 nn.GELU(),
20 nn.BatchNorm2d(dim),
21 )
22 ),
23 nn.Sequential( # pointwise convolution block
24 nn.Conv2d(dim, dim, kernel_size=1),
25 nn.GELU(), nn.BatchNorm2d(dim)
26 ),
27 )
28
29def PatchEncoder(in_layers, dim, patch_size, overlapping):
30 return nn.Sequential(
31 nn.Conv2d(in_layers, dim,
32 kernel_size=patch_size * max(1, overlapping),
33 stride=patch_size,
34 padding=max(0, overlapping - 1) * patch_size // 2
35 ),
36 nn.BatchNorm2d(dim),
37 nn.GELU(),
38 )
39
40class STLight(nn.Module):
41 def __init__(
42 self, in_layers, out_layers, dim, depth, patch_size,
43 overlapping, K_1, K_2
44 ):
45 super().__init__()
46 self.out_layers = out_layers
47 self.patch_encoder = PatchEncoder(in_layers, dim, patch_size,
48 overlapping)
49 self.net = nn.ModuleList([STLMixer(dim, K_1, K_2) for _ in range(depth)])
50 self.patch_reassemble = nn.Conv2d(dim // patch_size**2,
51 out_layers, kernel_size= 1)
52 self.up = nn.PixelShuffle(patch_size)
53 self.patch_encoder.apply(self._init_weights)
54 self.net.apply(self._init_weights)
55
56 def forward(self, x):
57 B, T, C, H, W = x.shape
58 x = x.reshape(B, T * C, H, W)
59 x = self.patch_encoder(x)
60
61 for i, block in enumerate(self.net):
62 if i == len(self.net) // 3:
63 x1 = x
64 if i == 2 * len(self.net) // 3:
65 x = x + x1
66 x = block(x)
67 x = self.up(x)
68 x = self.patch_reassemble(x)
69 return x.reshape(B, self.out_layers // C, C, H, W)

Figure 3. Full STLight implementation
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