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A. Additional Ablation Studies

A.1. Performance comparison on Shiny Blender
Dataset

We also conducted a comparative analysis of our ap-
proach against the baseline 3DGS using five scenes from
the Shiny Blender dataset [38]. As shown in the table, our
method achieves a substantial reduction in memory foot-
print relative to the baseline, while preserving comparable
performance, with an average compression gain of approx-
imately 22×.

A.2. Rendering Speed Comparison

We also evaluated the rendering speed of our method
using both the Kerb et al. rasterization approach and the
C3DGS custom renderer. C3DGS achieves fast rendering
speeds with its custom renderer, whereas, with the Kerb et
al. rasterization approach, its rendering speed is compara-
ble to the baseline 3DGS. In contrast, our method signif-
icantly enhances rendering speed on both the Kerb et al.
rasterization approach and the C3DGS renderer. Detailed
comparisons are shown in Table 5. For the RTX 3090, we
used the Kerb et al. rasterization approach, while the AMD
and RTX 3080 Laptop GPU evaluations utilized the C3DGS
renderer.

A.3. GAP vs Opacity Based Pruning

We also compare our Gradient and Opacity-Aware Prun-
ing (GAP) method with an opacity-based pruning approach
that excludes gradient information from (eq. 3). At small
pruning thresholds, opacity-based pruning demonstrates
similar performance to GAP. However, as the compression
rate increases, the performance difference becomes more
significant, as shown in Fig. 7. The inclusion of gradient
information enhances pruning performance because certain
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scene features (e.g., sky, glass) may have low opacity but
are still essential for accurate scene rendering.

A.4. One Shot Pruning vs Iterative Pruning

We also investigated the impact of one-shot pruning
compared to iterative pruning methods. Both GAP and
opacity-based pruning (Sec A.3) are iterative pruning meth-
ods. Our findings reveal that gradual pruning allows the
model to adapt more effectively to the scene compared to
one-shot pruning. For one-shot pruning, we utilized the pre-
trained 3DGS-30k model, conducted one-shot pruning, and
subsequently fine-tuned the model for 30k iterations. The
Table 6 provides a detailed comparison of one-shot prun-
ing versus iterative pruning on the Tanks&Temples dataset,
while the Fig. 7 illustrates the compression performance
tradeoff. It is important to note that these results do not
include QAT and entropy encoding.

A.5. Effect of Quantization Aware Training (QAT)
and Pruning Order on 3DGS Compression

We examined the efficacy of our proposed method by
reversing the order of Quantization Aware Training (QAT)
and GAP. Contrary to our standard approach, we applied
QAT first to a pre-trained Gaussian model followed by GAP.
Notably, we observed a decline in performance compared to
our standard approach. In our standard pipeline, the perfor-
mance of 3DGS improves due to pruning but deteriorates
slightly with QAT. Applying QAT first resulted in a perfor-
mance drop due to quantization, as evidenced by the final
results. Detailed outcomes are presented in Table 7.

A.6. Reducing memory footprint of training 3DGS-
30k

To reduce the memory footprint of baseline 3DGS, we
can also introduce GAP during the training of baseline
3DGS. We present the results in Fig. 8. Our GAP technique
yields substantial reductions in the memory footprint if in-
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tegrated during the training of 3DGS. On Tanks&Temples,
we observe reductions of up to 24× and 39× in memory
footprint, with a respective PSNR drop of 0.1 and 0.3.

B. Why Integer Quantization is Preferred
Vector quantization (VQ) schemes tend to be inefficient

on conventional hardware platforms, such as CPUs and
GPUs, and even more so on resource-constrained devices
like mobile CPUs and IoT devices. The primary issue arises
from the high encoding complexity of VQ. Specifically, VQ
exhibits exponential encoding complexity due to the need
for an extensive nearest-neighbor search. The codebook
size used in VQ is typically 2b, where b represents the quan-
tization precision. Consequently, encoding a matrix using
VQ involves 2b sequential comparisons, resulting in an en-
coding complexity of O(2b). In contrast, integer quanti-
zation offers significantly lower encoding complexity. En-
coding in this scheme can be achieved using only b bitshift
operations and a truncation operation, leading to a linear en-
coding complexity of O(b+ 1). This makes integer quanti-
zation much more favorable for hardware implementations,
especially on resource-constrained devices, as it avoids the
overhead of VQ’s exhaustive search process.

C. Limitations
ELMGS offers significant improvements in rendering

speeds and achieves high compression gains while main-
taining performance comparable to the baseline. However,
one notable limitation is the extreme pruning, which allows
us to significantly reduce the number of Gaussians only up
to a certain threshold before performance starts to deterio-
rate. Additionally, our method requires training on top of a
pre-trained 3DGS model, which increases the overall train-
ing cost. Future work will aim to enhance pruning ratios
and reduce training times to address these limitations.

D. Additional Qualitative Comparison
D.1. Visualization at Different Pruning Levels

We provide visualizations of the bicycle scene image,
which demands significant memory resources: 1.4GB for
3DGS-30K and 778MB for 3DGS-7K. In Fig. 9, we com-
pare the visualizations of the test set image at different prun-
ing levels denoted by γiter. Our end-to-end compression
pipeline demonstrates substantial compression rates while
preserving comparable visual quality. For instance, with
γiter = 0.375, our model achieves a compression ratio of
approximately 14× and increases rendering speed by 2.5×
while maintaining similar visual quality to 3DGS-30K. Fur-
thermore, with γiter = 0.6, our method attains a compres-
sion ratio of about 80×, preserving visual quality akin to
3DGS-7K and increasing rendering speed by 4.5×.

D.2. Additional Visualizations

We provide additional visualizations on benchmark
datasets Tanks&Temples, Deep Blending, and selected
scenes from the Mip-NeRF360 data. We compare our
method variants, namely ours-big, ours-medium, and ours-
small, with 3DGS-30k and 3DGS-7k baselines, respec-
tively. Our proposed method, ELMGS, demonstrates per-
formance comparable to the original Gaussian counterparts
while achieving significant compression rates. Please refer
to this link for additional visualizations.

https://drive.google.com/drive/folders/1iakEqYAQQcIZW1jDXSkoPZdP1RWHkOSK


Table 4. Comparison of performance between 3DGS-30k and ELMGS on five scenes from the Shiny Blender dataset.

Scene 3DGS-30k ELMGS
SSIM↑ PSNR↑ LPIPS↓ Mem↓ SSIM↑ PSNR↑ LPIPS↓ Mem↓

car 0.925 27.176 0.050 63.0MB 0.925 27.216 0.052 4.4MB
coffee 0.967 31.982 0.083 35.0MB 0.968 31.883 0.085 2.7MB
helmet 0.945 27.942 0.086 35.0MB 0.946 28.039 0.084 1.6MB
teapot 0.996 43.017 0.009 17.0MB 0.996 43.621 0.009 0.5MB
toaster 0.884 20.978 0.133 83.0MB 0.871 21.060 0.151 3.6MB

Average 0.944 30.219 0.072 46.6MB 0.941 30.364 0.076 2.6MB

Table 5. FPS Comparison between C3DGS and Our method.

Method RTX 3090 AMD Ryzen S 2440 RTX 3080 Mobile

Bicycle
C3DGS-Compressed 80 194 210

Ours 221 202 463

Bonsai
C3DGS-Compressed 153 192 265

Ours 378 231 417

Table 6. Performance comparison between one-shot pruning, opacity based pruning and gradient and opacity aware (GAP) iterative pruning
on Tanks&Temples dataset.

One Shot Pruning Opacity based Iterative Pruning Gradient and Opacity Aware Pruning (GAP)
SSIM↑ PSNR↑ LPIPS↓ Mem↓ SSIM↑ PSNR↑ LPIPS↓ Mem↓ SSIM↑ PSNR↑ LPIPS↓ Mem↓

0.848 23.920 0.171 326.8MB 0.849 23.981 0.169 338.5MB 0.849 23.989 0.170 335.5MB
0.848 23.901 0.172 261.5MB 0.849 23.939 0.171 261.0MB 0.849 23.971 0.171 280.8MB
0.844 23.813 0.180 196.3MB 0.846 23.961 0.178 200.0MB 0.848 23.966 0.175 219.3MB
0.839 23.698 0.191 152.8MB 0.839 23.799 0.192 152.0MB 0.844 23.936 0.187 153.0MB
0.819 23.376 0.228 87.5MB 0.818 23.404 0.232 86.0MB 0.829 23.848 0.220 76.8MB
0.793 22.927 0.272 44.0MB 0.794 23.069 0.574 47.0MB 0.810 23.559 0.251 45.3MB
0.756 22.234 0.322 22.0MB 0.767 22.655 0.310 25.0MB 0.780 22.919 0.294 23.4MB

Table 7. Comparison of performance between Quantization Aware Training (QAT) before and after Gradient and Opacity aware Pruning
(GAP) on Tanks&Temples dataset.

QAT Before GAP QAT After GAP
SSIM↑ PSNR↑ LPIPS↓ Mem↓ SSIM↑ PSNR↑ LPIPS↓ Mem↓

0.837 23.629 0.191 51.0MB 0.846 24.000 0.181 46.5MB
0.828 23.391 0.205 39.0MB 0.842 23.967 0.192 35.0MB
0.798 22.907 0.253 23.5MB 0.834 23.946 0.210 23.5MB
0.750 21.994 0.316 13.4MB 0.820 23.769 0.236 14.2MB
0.707 21.163 0.367 7.9MB 0.796 23.309 0.271 8.0MB
0.696 20.902 0.380 5.8MB 0.760 22.549 0.321 3.6MB
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Figure 7. The graph illustrates the trade-off between performance and size when employing GAP, opacity based pruning and one-shot
pruning techniques on Tanks&Temple dataset.
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Figure 8. Memory savings while training using Gradient and Opacity based Pruning (GAP) on Tanks&Temples dataset.
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Figure 9. Qualitative comparison of the bicycle image at various pruning levels, defined by γiter . ELMGS demonstrates substantially
higher compression rates compared to both baselines while maintaining similar visual quality.
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