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1INRIA 2University Cote d’Azur 3Idiap

Abstract

First, we discuss the child and clinician acquisition sys-
tem for the Loose-Interaction dataset. Then we provide fur-
ther details about the Loose-Interaction dataset and define
each action class. Next we discuss experimental details.
Finally, we explore the usefulness of automated diagnosis,
and importance of loose-interaction in autism. Figure S1
provides an outline of the supplementary materials.
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Figure S1. An outline of the supplementary materials.

1. Child and Clinician Acquisition for the
Loose-Interaction

The goal is to encode the behavioural characteristics of
two individuals in a complex environment. To achieve this,
first, we acquire the child and clinician (”clinician”, ”psy-
chologist”, and ”therapist” are used interchangeably) from

the scene by applying an ensemble of SOTA methods in-
cluding (People Detection, Tracking, Tracklet Clustering,
Age-based Classification and Clinician Filtering). This part
is crucial for Loose-Interaction dataset, specifically, where
we have more than 2 people in a complex environment and
we want to model only the child and clinician interactions.
Figure S2 provides an overview of the whole system. In the
Loose-Interaction dataset the role of clinician and child can
be treated as a leader and an assistant, respectively.

1.1. Person Detection

The foremost step of our system is to detect all the peo-
ple in the video. We adopt the YOLOv5 [6] (a strong end-
to-end object detection network) pre-trained on the COCO
dataset [9]. The model takes an input Xh×w×c

i and out-
puts the bounding box (Y x,y,h,w

i ), confidence score, and the
class of the object (person in our case). The Xi represents
the image that is being processed, while Yi is the position
of the bounding box of the person that is being detected in
that image. We used an image of size 160 × 160 as the
best choice to detect each person in our videos. We ex-
plored other detection algorithms including HOG [4], and
YOLOv3 [11], but we found YOLOv5 the best among all.

1.2. People Tracking

The purpose of tracking is to provide each person’s loca-
tion with an ID within a video. We employ the DeepSORT
[13] algorithm for this task. The DeepSORT algorithm is
a combination of the Kalman filter for tracking the missing
tracks and the Hungarian algorithm with a deep appearance
descriptor to handle occlusion and viewpoint changes. The
tracking algorithm takes the input of the detector in the form
of frame

bboxj

i , where bboxj are the bounding boxes in the
ith frame. The tracker provides an output of frame

tidj

i for
each person’s tracklet tidj within that frame, j represent-
ing each person in the ith frame. We compared DeepSORT
with SORT [2] and FairMOT [14] to choose the best (deep-
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Figure S2. The block diagram of our entire system, from person detection to action classification.

ID of batch 1 ID of batch N

Video

Batch Feature

Extractor

Batch Feature

Extractor

DBSCAN

Features embedding of size 512

16 cropped images of a single tracklet
Batch Features Extractor includes

1) Skeleton Filter
2) Re-ID features extraction
3) Features aggregation: Median Pooling

Tracklets

Figure S3. Overall Clustering approach.

SORT) among them for tracking.

1.3. Tracklet Clustering

In an ideal situation, a detector and a tracker are good
enough to provide a single tracklet for each person in the
video. However, this is not the case in real-world scenar-
ios. Due to occlusions, camera movements, and spatial sim-
ilarity (wearing similar clothes and/or parents’ appearance
similar to that of a child), it becomes very challenging to
achieve a single tracklet ID for each person. Therefore, a
clustering mechanism is introduced to cluster the IDs of a
single person. This part not only merges multiple track-
lets but also filters out unnecessary ones. We developed a
skeleton-based filter using the HRNet-w48 network [12].
Two different filters were applied to check the usability of
the tracklet, one on the head and another on the top body
(above the hips). The filter takes an input of Xb,h,w,3, where
b, h, w represents the batch-size, height, and width, respec-
tively. The Skeletal Filter checks if there are head joints

(ears, nose, and eyes) or upper body joints (arms, and shoul-
ders).

Xb=16 =

{
pass, if n sk ≥ 8

discard, otherwise
(1)

Here, Xb represents a snippet of batch size 16 and n sk
is the number of skeletons. We only keep a skeleton if it has
at least eight skeleton joints present as in Eq. 1.

Next, we fine-tuned OSNet [15] Re-Identification net-
work on Loose-Interaction dataset with a triplet loss for re-
id features extraction. Features of Xn sk,512 are taken from
the last layer of OSNet [15] and are provided as input for
the DBSCAN [8] clustering algorithm (as shown in Figure
S3). A T-SNE projection of the clusters is given in Figure
S4.

1.4. Video-based Age Classification

For the proposed two-stream architecture, it is necessary
to identify the child (assistant) from the adults (parents and
clinicians). Due to the resolution and movements of the
camera of both the child and the clinician and the invisibil-
ity of the face, it was difficult to use an existing image-based
age classification from the face images. To address these
issues, similar to [1], we propose a video-based age classi-
fication network. Thanks to 3D-CNNs, we can model tem-
poral information (hence, overcoming the issue of face oc-
clusions). Also, analysing the entire body can help us cap-
ture important information about age (for example, shoul-
der width, body height, etc.). We design a custom X3D [5]
architecture with an additional 512 MLP head and a BCE
loss for age classification. The model inputs cropped im-
ages in the form Xb×C×h×w×t to predict the classes (child
vs. adult). Where b, h, w, c, t are batch size, width, height,
channel, and temporal duration of the cropped tracklets, re-



Figure S4. T-SNE projection of tracklet clusters for each person in
the video.

spectively. We experiment with self-attention and different
loss types to achieve the best results as shown in Table S1.

Network Loss type Precision/Recall Acc.%
X3D* BCE loss 0.92/0.92 92.3
X3D Triplet loss 0.92/0.91 91.5
X3D BCE loss 0.93/0.93 93.5

Table S1. Experimenting with different loss functions and archi-
tecture design. * represents X3D + self-attention

1.5. Clinician Filtering

We filter out unnecessary people (parents and other clin-
icians) from the videos using X3D [5]. We extract the CNN
features for each video from the last CNN layer of the X3D
[5] model in the form of featsN×c, where N represents
the number of tracklets, and c is the features of the conv5
layer. Taking log of the L2 norm for each tracklet within a
video, we obtain the energy information per tracklet. The
estimated L2-norm (energies) is sorted in descending order
to pick the first ID (clinician) with the highest motion.

2. Loose-Interaction Dataset
The dataset is recorded while assessing children for pos-

sible ASD following the ADOS-2 protocol. After clean-
ing, we ended up with 845 clipped videos that have 9 ac-
tion classes. In this paper, a total of 87 unique children’s
hour-long videos were used out of 132 videos. Figure S5
provides a few samples from the entire dataset. Each inter-
active action is explained below along with descriptions of
clinician observation during each activity.

• Anniversary: The anniversary activity involves cel-
ebrating a birthday with a child (either for a doll or
for the child). During this activity, several actions are
carried out such as cutting the cake, putting the cake
on plates, pretending to eat the cake, picking up cups
and putting them down on the table, giving cups to the
child and taking them back, drinking from cups and
clapping. The activity is played with cups, plates and
kinetic sand (used as cake) along with a doll.

The clinician assess shared pleasure, social openings
and reciprocity of the child.

• Ball/balloon: In this activity, the clinician plays with
the child using a ball or a balloon. The clinician either
fills the balloon with air or throws a ball at the child.
The child usually reacts to the balloon or ball with joy
and excitement by jumping, clapping and chasing it.
However, sometimes when playing with a balloon, the
child may show fear by covering their ears with their
hands, especially if the balloon pops.

Therapist observe child emotions, motor behaviour,
and unusual movements.

• Bubbles: The clinician creates bubbles for the child to
play with. The child may react to the bubbles by pop-
ping them or walking towards them, and or jumping.
However, some children may not show any reaction to
the bubbles and may only smile.

Therapist evaluate the child’s ability to initiate joint-
attention, and shared pleasure. They also notice their
sensory behaviour in this activity.

• Construction: The child and the clinician play to-
gether with wooden boxes. They perform actions such
as picking up the boxes and stacking them on top of
each other to construct a pyramid or other shape.

Analyse eye-contact, and gestures of child.

• Demonstration: In this activity, the clinician asks the
children about their morning routine and requests them
to demonstrate actions such as brushing their teeth,
washing their faces and hands, and using soap. Al-
though these objects (soap, sink, and toothbrush) do
not exist in the activity, the child and clinician pretend
to have them.

How the child represent familiar actions with gestures.
How he/she demonstrate a sequence of actions. Does
he/she mime imaginary object or uses his/her body to
represent an object.

• Describing an image: The child and clinician interact
using a piece of paper with pictures on it. The paper
could be a larger picture or small cards. During the ses-
sion, actions such as pointing at images, talking about
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Figure S5. Samples from the Loose-Interaction dataset. We choose the best visible samples to allow the readers to easily understand the
action types. Best viewed in colour.

Figure S6. Visualisation of the confusion matrix of the proposed
model on the Loose-Interaction dataset.

them, picking up small cards and putting them back are
carried out.

Evaluate child’s spontaneous language and commu-
nication as well as information about what interests
him/her.

• Imitation: In this activity, the clinician first plays with
an object in a specific way and then asks the child to
imitate their gestures or actions. The clinician uses ob-
jects such as a toy frog, aeroplane and flower. Actions
like hopping the frog using hand gestures, flying an
aeroplane in the air and smelling the flower are car-
ried out. Frog hopping is the most common activity
performed by children.

Assess child’s social awareness, social skills, atten-
tion, and the use of miniature objects to imitate famil-
iar actions.

• Joint-game: The child and the clinician play a game
together. Some examples of games include turning a
toy together, playing with a dollhouse (with dolls sit-
ting on toy sofas and tables), and playing with a toy
car together. The clinician and or the child can choose
any game to play together.



evaluating the child interactive ability during play.
how the child develop interactions and produce new
initiatives beyond a direct response to clinician over-
tures. How the child propose new ideas or able to fol-
low clinician’s ideas.

• Puzzle: Playing a puzzle with the child interactively.
The goal is to join small pieces to form a shape. Dur-
ing the activity, actions such as picking up an object,
putting it back, joining pieces together and exchanging
objects between each other are carried out.

Analyse the child’s facial expressions, creativity, and
gaze.

2.1. Interaction between the child and clinician

Apart from the joint-game activity example, here we dis-
cuss a few more examples of loose interactions between
the child and clinician. Anniversary: Their interaction is
loose, because 1) the clinician (leader) is pouring drinks into
cups, while the child (assistant) is cutting the cake or play-
ing with a doll or clapping out of joy, 2) the clinician is as-
sembling the plates and the child is drinking from the cup,
etc. Construction: An interaction over creating a figure out
of small boxes. They play the game together. Similar inter-
action can be observed in actions like imitation, describing-
image and puzzle, etc. Ball/Balloon: Interaction can be
observed in a catch-and-drop game, or in chasing the ball
and pulling the ball/balloon away.

3. Public Dataset Details

3.1. Actions from NTU RGB+D Dataset

We combine interactive actions from the NTU RGB+D-
60 and NTU RGB+D-120 datasets to create a tight inter-
active actions dataset. We used the 26 multi-action classes
including A50 - A60 (NTU RGB+D 60), and A106 - A120
(NTU RGB+D 120). We use cross-subject settings for our
experiments.

3.2. Autism Dataset

Autism dataset was proposed by [10] for ASD diagno-
sis in young children. The dataset has eight representa-
tive human action responses invoked through either listener
response or imitation instructions. Specifically, action are
chosen such as move the table and arms up for gross mo-
tor skill assessment, lock hands and tap-ping for fine mo-
tor skills, rolly polly for complex motor actions, touch nose,
touch head and touch ear for identification of different body
parts.

4. Experimental Details
4.1. More Ablations

We provide further ablations on loose-interactions
dataset about backbone depth and number of attention
heads. We noticed that the model accuracy decreases in
using either 4 or 16 attention heads compared to 8 used
in the model. The GLA module becomes too simpler for
the complex interaction to learn when we use 4 attention
heads. Similarly, using 16 attention heads leads to overfit-
ting as the dataset is not large enough to learn such interac-
tions as shown in Table S2. Furthermore, we also analyse
the depth of backbone used. We choose 2 more backbones
(X3D-S, and X3D-XL). With X3D-S as backbone we reach
70.4 % accuracy in Table S2. This validates a smaller back-
bone is enough to learn such interactions in a small dataset
such as loose-interaction dataset. In contrast, with X3D-
XL, the model performs worse. Initially, training the back-
bone with our method leads to overfitting. Therefore, we
use a different training strategy by training the X3D-XL on
the dataset first and then use the frozen backbone with our
proposed modules which achieves 61.8% accuracy. This in-
teresting analysis verifies our proposed modules are helping
the backbone learn these interactions with trained together.

In addition, we further investigate the use of providing
two different inputs, to analyse if we need two different in-
puts to the model as shown in Table S3. Using the same
input to both streams increases the accuracy slightly com-
pared to using a single stream.

Attention
heads

Acc.
(%)

Backbone
depth

Acc.
(%)

4 48.6 X3D-S 70.4
8 72.0 X3D-M 72.0
16 30.8 X3D-XL 61.8

Table S2. Analysis of using different attention heads in GLA mod-
ule and backbone depth on loose-interaction dataset.

Same Inputs
Accuracy

(%)
Xassistant 52.10

Xleader 58.64

Table S3. Analysis of using same input to both streams

4.2. Class-Balanced Loss

To combat the imbalance situation of our dataset, we
adapted Class-Balanced Loss (CB Loss) [3]. CB loss in-
troduces a weighting factor that is inversely proportional to
the effective number of samples in each class. For an input



x with label y ∈ {1, 2, ..., C}, where C is the total number
of classes, assume that the predicted output of the model
for all classes is z = {z1, z2, ..., zC}, where zi ∈ [0, 1]
for all i, the loss function is denoted ℓ(z, y). For class
i in ni, the effective number of samples for that class is
Eni = (1 − βni

i )/(1 − βi), where β is a weighting factor
for the loss function, with hyper-parameter β ∈ [0, 1] that
controls how fast En grows as n increases. We use a com-
bination of CB loss with focal loss, which can be written
as:

1

Eny

FocalLoss(z, y) = − 1− β

1− βny

C∑
i=1

(1− pti)
γ log(pti)

(2)

CB(z, y) =
1

Eny

FocalLoss(z, y) (3)

where ny is the number of samples in the ground-truth class
y, z is the predicted output and pti = sigmoid(zti).

Figure S7. Confusion matrix of VideoMAEfine tuned on the
Loose-Interaction dataset.

4.3. Confusion Matrix Comparison

Our method achieves the highest accuracy (72.0) among
all methods. We compare confusion matrix of our method
(Figure S6) with VideoMAEfine tuned as in Figure S7 for
the Loose-Interaction dataset . Our method improves all
action classes, especially demonstration, describing-image,
joint-game, and puzzle with the highest margin compared
to the late-fusion strategy for VideoMAE. Furthermore, we

Figure S8. Visualisation of per-class accuracy of proposed net-
work on the Autism dataset.

visualise the confusion matrix of our proposed method on
the Autism [10] dataset as well. From the confusion ma-
trix in Figure S8, we notice that some actions such as tap-
ping, touch-ear, and touch-nose are highly dependent on the
movements of the child only, and our model has a hard time
recognising them.

5. Applications of Automated ASD Diagnosis

ASD diagnosis is a complicated challenge. The key fac-
tors are medical expertise, specialised diagnostic techniques
based on interpreting child behaviour, parent interviews,
long-term follow-ups, symptom inspection, and manual
analysis. These evaluations take an extensive amount of
time, and they demand laborious clinical procedures. Addi-
tionally, human assessments are subjective and inconsistent.
Early studies suggested that abnormalities in social interac-
tions, communication, and presenting repetitive behaviours
could be the primary indicators of ASD [7].

An automated or semi-automated ASD diagnosis can be
useful to countermeasure these issues. An automated ASD
diagnosis tool can be useful in providing preliminary re-
ports for clinicians for further diagnosis. Although, the au-
tomated system can be efficient one can not rely completely
on such systems. These systems should be able to assist
clinicians in their diagnosis. For instance, an automated
system shall provide significant visual cues along with an
autistic severity report for the clinician to make their final
judgement.

Another application of automated ASD is to objectify the
diagnosis. In other words, human assessments are subjec-



tive and can be compared with an AI-based assessment to
make the final judgement.

On the contrary, such an AI ASD diagnosis system can
be harmful if it is not experimented enough. For exam-
ple, parents or clinicians relying solely on the AI diagnosis
could lead to adverse results if the AI system is not efficient
enough. Therefore, such systems should be tested exten-
sively before making them available to the general public.

5.1. Importance of Loose Interaction in ASD

One of the major applications of this study is to assist
clinicians in their diagnosis. Each ADOS-2 activity (an-
niversary, ball, construction etc.) is conducted to diagnose
a specific autistic behaviour. For instance, an anniversary
or joint-game is used to analyse the social interaction of the
child. Similarly, ball/balloon and bubbles are used to trig-
ger repetitive or stimming behaviour of an autistic kid. It is
time-consuming and clinically requires arduous processes
to look up these specific parts in a 2-hour long session. Our
method can provide a summarised version of the session
for the clinician to analyse. This summarising can help the
clinician perform diagnosis efficiently.

Furthermore, in the future, we are interested in utilis-
ing this method for generating a social interaction report for
child interactions. How involved are they in these social ac-
tivities? One possible option can be using eye-gaze along
with body gestures to generate a report for loose interac-
tions.

References
[1] Abid Ali, Ashish Marisetty, and Francois Bremond. P-age:

Pexels dataset for robust spatio-temporal apparent age clas-
sification. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 8606–8615,
2024. 2

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and
Ben Upcroft. Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP),
pages 3464–3468. IEEE, 2016. 1

[3] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number
of samples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 5

[4] Navneet DARAL. Histograms of oriented gradients for hu-
man detection. Proc. of CVPR, 2005, pages 886–893, 2005.
1

[5] Christoph Feichtenhofer. X3d: Expanding architectures for
efficient video recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 203–213, 2020. 2, 3

[6] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,
NanoCode012, Yonghye Kwon, Kalen Michael, TaoXie, Ji-
acong Fang, imyhxy, Lorna, (Zeng Yifu), Colin Wong, Ab-

hiram V, Diego Montes, Zhiqiang Wang, Cristi Fati, Je-
bastin Nadar, Laughing, UnglvKitDe, Victor Sonck, tkianai,
yxNONG, Piotr Skalski, Adam Hogan, Dhruv Nair, Max
Strobel, and Mrinal Jain. ultralytics/yolov5: v7.0 - YOLOv5
SOTA Realtime Instance Segmentation, Nov. 2022. 1

[7] Leo Kanner et al. Autistic disturbances of affective contact.
Nervous child, 2(3):217–250, 1943. 6

[8] Kamran Khan, Saif Ur Rehman, Kamran Aziz, Simon Fong,
and Sababady Sarasvady. Dbscan: Past, present and future.
In The fifth international conference on the applications of
digital information and web technologies (ICADIWT 2014),
pages 232–238. IEEE, 2014. 2

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Mi-
crosoft coco: Common objects in context, 2014. cite
arxiv:1405.0312Comment: 1) updated annotation pipeline
description and figures; 2) added new section describing
datasets splits; 3) updated author list. 1

[10] Prashant Pandey, Prathosh AP, Manu Kohli, and Josh
Pritchard. Guided weak supervision for action recognition
with scarce data to assess skills of children with autism. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
34(01):463–470, Apr. 2020. 5, 6

[11] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 1

[12] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep
high-resolution representation learning for human pose es-
timation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5693–5703,
2019. 2

[13] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE International Conference on Image Processing
(ICIP), pages 3645–3649, 2017. 1

[14] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. International
Journal of Computer Vision, 129:3069–3087, 2021. 1

[15] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao
Xiang. Learning generalisable omni-scale representations
for person re-identification. IEEE transactions on pattern
analysis and machine intelligence, 44(9):5056–5069, 2021.
2


	. Child and Clinician Acquisition for the Loose-Interaction
	. Person Detection
	. People Tracking
	. Tracklet Clustering
	. Video-based Age Classification
	. Clinician Filtering

	. Loose-Interaction Dataset
	. Interaction between the child and clinician

	. Public Dataset Details
	. Actions from NTU RGB+D Dataset
	. Autism Dataset

	. Experimental Details
	. More Ablations
	. Class-Balanced Loss
	. Confusion Matrix Comparison

	. Applications of Automated ASD Diagnosis
	. Importance of Loose Interaction in ASD


