
Appendix
A. Object Decoder Weight Initialization

Various state-of-the-art transformer models like BERT,
OpenCLIP and GPT use heuristics for weight initialization,
for example by initialising weights to a zero-mean normal
distribution of standard deviation 0.02 or 1√

H
, for H the

hidden dimension. Guided by the principles of mean field
theory, we rigorously calculate weight initialization standard
deviations such that the expected forward pass norms are
statistically preserved throughout the object decoder, and
such that the overall contributions of the main and resid-
ual pathways are balanced, avoiding excessive input signal
dilution. This comes with numerical and gradient stability
benefits, leading to fast and robust initial convergence.

A.1. Strategies for Strong Initial Convergence

In general, the rule-of-thumb aims of the presented
variance-balanced weight initialization strategy for the for-
ward pass of a network are:

• Avoid input signal dilution. For example, if the resid-
ual pathway of the input through the network involves
repeatedly combining it with values calculated from
random weights and renormalizing, then the ‘propor-
tion’ of the final output signal that actually corresponds
statistically to the input signal can be exponentially
microscopic, making initial convergence more difficult.

• Avoid combining unbalanced scales of data. If two
signals are added or concatenated that have significantly
different scales (multiplication is less critical), espe-
cially if done repeatedly, then this has potentially nega-
tive numerical effects on backpropagation. It can also
quickly lead to signal dilution.

• Avoid significant scale decay/growth. For example,
if each residual block in a network initially causes a
rescaling of signals by only 50% on average, then a
moderate 12-layer transformer with cross-attention will
initially produce outputs that are only one 70 billionth
of the inputs, which is undesirable for learning.

• Aim for around unit scale throughout. Making an op-
timizer deal with vastly different scales of signals and
gradients throughout the network is undesirable, even if
the optimizer has features to help deal with it. Floating-
point representations have their limits, especially if
attempting to train in reduced or mixed precision. Cer-
tain layers, like for example certain activation functions
(e.g. GELU), are also ‘designed’ for approximately unit
standard deviation scales of input data.

Based on these rules of thumb, it can immediately be
seen why transformers with post-layer normalization [68]

in general struggle to train for larger numbers of layers. In
each residual block, the initially random weights in the resid-
ual path cause an essentially random residual signal to be
added to the input signal, before the combined signal is then
layer-normalized. This results in the input signal to the next
residual block only being a certain fraction the input signal,
and the rest just random noise. As this combined signal is
now the new input signal for the next block, it further down-
scales the original input signal by a certain factor and adds
even more random noise. This process continues throughout
the entire transformer, leading to prototypical signal dilu-
tion, with the problem getting exponentially worse for larger
numbers of layers. This is why pre-layer normalization was
chosen for NOVIC.

A.2. Data Variance Propagation

We must first understand how variances propagate
through the individual layers of a transformer network before
we can integrate this knowledge into a complete strategy.

Addition. If a vector containing elements of variance σ2
1

is added to an (uncorrelated) vector of variance σ2
2 , then the

variance of the elements in the sum of the two vectors is

σ2
1+2 = σ2

1 + σ2
2 . (1)

Linear layer. If a vector v = (v1, . . . , vD) of dimension
D containing elements of variance σ2

D is passed to a (zero-
bias or biasless) linear layer of output dimension T , then
given weights wij of variance σ2

w, the expected variance of
the output elements u = (u1, . . . , uT) is

σ2
T = Var(ui) = Var

(D∑
j=1

wijvj

)
=

D∑
i=1

Var(wijvj)

=

D∑
i=1

Var(wij) · Var(vj) = D · σ2
w · σ2

D. (2)

A.3. Variance-Balanced Transformer Initialization

In terms of the layers that are relevant for the statistical
analysis of the data passing through the model during train-
ing, the object decoder fundamentally consists of (cf. Fig. 3):

• Input stage: A linear projection of the input embed-
ding vector in parallel to the token embeddings of the
ground truth object noun tokens, followed by an addi-
tive positional embedding,

• Transformer: L consecutive transformer decoder lay-
ers, each sequentially consisting of two residual blocks,
first for multi-head attention and then for feedforward
layers, and,

• Output stage: A layer normalization, followed by a
linear projection to obtain the token logits, where the
weights of the projection are tied to the token embed-
dings matrix.

Note that no biases are used throughout the architecture, in-
cluding in all linear, layer norm, and multi-head attention
layers, and thus can be mathematically neglected in the anal-
ysis. If they were present, they would be initialized to zero
anyway however, to allow them to be used in the long run
by the optimizer, but initially not affect the optimization too
much. We proceed with details of the variance-balanced
weight initialization strategy for each part of the transformer
model.

Input stage. The input to NOVIC is a unit embedding
vector e = (e1, . . . , eF) of dimension F (e.g. F = 768 for
the nominal CLIP embedder), so the elements of this input
signal vector have a zero-mean variance of

σ2
e =

1

F

F∑
i=1

e2i =
1

F
∥e∥2 =

1

F
. (3)

To ensure approximate unit scale throughout the transformer
post-initialization, we wish for each signal element through-
out the network to have near-unit variance. As such, we
initialize the weights Wp of the linear projection layer from
a zero-mean normal distribution of variance 1

2 , i.e. N (0, 1
2),

and do the same for all weights in the token embeddings Wte

and learned position embeddings Wpe. If W ∗
te is the learn-

able token embeddings for the specific ground truth tokens
being passed to the object decoder, then from Eqs. (1) to (3),
we can see that the expected variance σ2

p post-positional
embedding, i.e. of the actual input sequence vectors to the
transformer layers, is thus

σ2
p = Var

(
Concat(eWp,W

∗
te) +Wpe

)
= Concat

(
Var(eWp),Var(W ∗

te)
)
+ Var(Wpe)

= Concat
(
F · Var(Wp) · σ2

e ,
1
2

)
+ 1

2

= Concat
(
F · 1

2 · 1
F , 1

2

)
+ 1

2

= 1, (4)

as desired. Note that some simplifying leniency is being used
in the notation here by referring to elementwise variances
with Var(·) of a matrix, and to work around the detail that
the PH outputs of the linear projection layer need to be split
into P (number of prefix tokens) individual sequence vectors
of dimension H for the dimensions to work out.

Transformer. The decoder-only transformer used in
NOVIC consists of L layers, each containing two residual

blocks, for a total of 2L consecutive residual blocks that
strictly add calculated residuals to the input signal but oth-
erwise leave it untouched. Due to the random weights used
in the calculation of the residual contributions, the residual
blocks can be modeled as adding statistically independent
noise to the main path that we want to ensure does not ex-
cessively dilute the input signal. We initialize the weights
of each residual pathway so that it contributes an expected
variance of 1

2L , leading to a final expected output variance
of 2, of which half statistically comes directly from the input
signal. The immediately following layer normalization of
the output stage then renormalizes the scale of the data.

We achieve a residual pathway variance of 1
2L in each

self-attention block by using weights of all 1 for the leading
layer normalization, using weights of variance 1

H in order to
make the query-key-value projections variance-preserving,
and using weights of variance 1

2LHS in order to generate
the desired output variance while accounting for (using S)
the variance reduction that occurs in the scaled dot-product
attention (SDPA). It can be shown that for P prefix tokens
and an expected input variance σ2 to the SDPA, a good
approximation of the variance reduction is given by the factor

S =
1

P

(
1 + σ4 (P − 1)

P

)
. (5)

As the layer normalization layer outputs unit variance signals
and the query-key-value projections are variance-preserving,
the expected input variance to the SDPA is σ2 = 1, so this
reduces to

S =
2P − 1

P 2
. (6)

For the residual pathway of each feedforward block we use
a similar strategy, and use weights of all 1 for the leading
layer normalization, use weights of variance 1

H in order to
make the first feedforward linear layer variance-preserving
(refer to Eq. (2)), and use weights of variance 1

2LKA for the
second feedforward linear layer, where K is the intermediate
feedforward dimension, and the factor A compensates for
the variance reduction of the activation function. A is esti-
mated by transforming the expected unit normal probability
distribution by the activation function and calculating the
variance around zero of the resulting distribution. For ReLU
this yields A = 1

2 , and for GELU this yields A ≈ 0.4252.

Output stage. As the weights of the token logits linear
layer is tied to the already-initialized learnable token embed-
dings (variance 1

2), it only remains to initialize the weight of
the final layer normalization that precedes it (required due to
the use of pre-layer normalization). As the final token logits
need to be a suitable scale for the log-softmax operation that
follows as part of the loss, we effectively ‘normalize’ the
output sequence vectors by initializing the output layer nor-
malization weights to σo = 1√

H
. Using Eq. (2), this results

in token logits of standard deviation

σl =
√

H · 1
2 ·

(
1√
H

)2
=

1√
2
≈ 0.707, (7)

which is a reasonable near-unit standard deviation that pro-
vides a good slightly conservative initialization of computed
forward pass logits—crucially, without excessive input sig-
nal dilution—for fast stable convergence. The complete
variance-balanced weight initialization strategy has been
empirically confirmed at every layer of the model to work
exactly like the statistical modeling suggests (also as a veri-
fication of the underlying independence assumptions), up to
the expected approximations already discussed.

B. Object Noun Dictionary

The object noun dictionary was created based on a mul-
titude of data sources, but most prominently the WordNet
dictionary [47], GNU Collaborative International Dictionary
of English [9], and the categories used by 35 different image
classification and object detection/segmentation benchmarks.
The benchmarks were divided into two groups, object and
general benchmarks, depending on whether the class names
were considered to be all valid object nouns or alternatively
only used to provide frequency boosts, respectively. The
steps used to generate the object noun dictionary were as
follows:

1. All noun synsets in WordNet were collected that are part
of one of the following 11 lexical classes (considered
to be the only ones out of the 26 available that could
possibly contain object nouns): animal, artifact, body,
event, feeling, food, object, person, phenomenon, plant,
or possession.

2. The entire WordNet synset hierachy was formatted
as a tree and used to manually select nodes and sub-
hierarchies considered to fit the definition of an object
noun. 1598 manual synset specifications were recorded
and used to select 23 942 synsets. This is the only step
that required manual human intervention.

3. The chosen synsets were expanded to a working list
of lemmas, and canonicalization was used to collect
and deal with alternate spellings. A total of 42 981
canonical lemmas resulted.

4. 4105 unique object names were loaded from the ob-
ject benchmarks and used to increase the number of
canonical lemmas to 43 588.

5. A dataset of 1818 spelling equivalence mappings be-
tween American and British English were used to add
additional spellings to the lemmas.

6. The GNU Collaborative International Dictionary of En-
glish was parsed and used to provide lemma noun alter-
nates, and matches between singular and plural forms,
especially for irregular nouns.

7. The WordNet plural noun exceptions list was used to
deal with multiple singulars that share a plural form
and multiple plurals that share a singular form.

8. A word inflection strategy was used to generate singular
forms for nouns that had only appeared as plurals thus
far, and the plural forms for all seen singulars.

9. The main spelling was resolved for each lemma with
the use of language heuristics, and multiple lemmas that
shared common spellings across singulars and plurals
were merged. At this point there were 118 045 noun
alternates in total across the now 42 919 lemmas.

10. The n-gram frequencies of the Google Web Trillion
Word Corpus [8, 49] were used to assign frequencies to
each individual alternate of each lemma.

11. 68 077 (non-unique) class names were loaded from the
object and general benchmarks, and used to boost the
frequencies of matching nouns in the dataset.

12. All noun frequencies were converted to an affine log-
scale to better represent how often the corresponding
nouns should be sampled during dataset generation.

The final object noun dataset has 65 210 singulars and
31 316 plurals for a total of 96 526 noun alternates that are
associated with 42 919 unique canonicalized object nouns.
The average log-scale frequency of each noun alternate is
1.5, resulting in an average log-scale frequency of 3.5 per
object noun.

C. LLM-based Caption Generation
Given the complete object noun dictionary, an LLM was

used to generate rich dynamic captions involving each of the
object nouns in the dictionary. Based on the log-frequencies
obtained from the object noun dictionary, ten times as many
captions are generated independently for singular and plural
forms of the noun, with at most 100 being generated for
either category. OpenAI GPT-3.5 Turbo was used, specif-
ically gpt-3.5-turbo-1106 with a temperature of 0.8, maxi-
mum 1000 output tokens, and example prompts/responses as
shown in Prompt 1. Ten captions are generated in every API
call, and parsed using all available spelling variations of the
object noun into appropriate caption templates. For instance,

”Two children playing with a bicycle in the yard” is parsed
and stored as ”Two children playing with a {singular} in the
yard”. In cases of words where there are multiple spellings,
like for example orangutan, this ensures that a caption tem-
plate can be used in future to generate data for any desired

Prompt 1: Singular/plural caption generation examples

SYSTEM: You are a helpful AI assistant.
PROMPT: Generate a list of 10 image captions each containing the
target object “bicycle” (singular). Use the style of the image captions for
large language model pre-training. Don’t use poetic language. Use a
different sentence structure for each caption. Output the list in the
following form: <nr>. <caption>
RESPONSE:
1. A red bicycle parked against a brick wall.
2. The bicycle resting under a tree in the park.
3. A woman riding a bicycle along the beach.
4. A vintage bicycle leaning against a lamppost.
5. Two children playing with a bicycle in the yard.
6. The bicycle locked to a metal railing outside the store.
7. A man carrying a folded bicycle up the stairs.
8. The bicycle lying on the grass with its wheels spinning.
9. A bicycle with a basket filled with colorful flowers.
10. The bicycle propped up against a wooden fence.

SYSTEM: You are a helpful AI assistant.
PROMPT: Generate a list of 10 image captions each containing the
target object “bicycles” (plural). Use the style of the image captions for
large language model pre-training. Don’t use poetic language. Use a
different sentence structure for each caption. Output the list in the
following form: <nr>. <caption>
RESPONSE:
1. A row of bicycles parked by the street, waiting for their riders.
2. Bicycles lined up neatly in a bike-sharing station, ready for use.
3. Many bicycles secured to a rack outside a busy train station.
4. Several bicycles leaning against a wall, casting shadows in the
afternoon sun.
5. Dozens of bicycles scattered across the open field during a cycling
event.
6. A group of bicycles locked together in the urban bike parking area.
7. Bicycles parked in a row, their colorful frames catching the eye of
passersby.
8. Multiple bicycles lined up near a city park, offering a convenient mode
of transportation.
9. A cluster of bicycles parked haphazardly outside a bustling cafe.
10. Bicycles stacked on top of each other in a crowded bike storage area.

spelling if required by the sampling strategy. A total of 1.8M
captions were generated in this way.

D. Effect of Noise Augmentation

Based on experiments, the ‘magnitude’ of Gaussian noise
that performed best for noise augmentation during training
is G = 3.25. The precise definition of how this noise was
implemented was by adding elementwise Gaussian noise
with a standard deviation of

σG =
G√
F

(8)

to the input text embedding vectors and then renormaliz-
ing the result back to a unit vector. For the SigLIP B/16
model, which has an embedding dimension of F = 768,
this corresponds to an elementwise standard deviation of
σG ≈ 0.117. If g = (g1, . . . , gF) is the random noise vector
with gi ∼ N (0, σ2

G), then we can see that

E
[
∥g∥2

]
= E

[F∑
i=1

g2i

]
=

F∑
i=1

E[g2i] = Fσ2
G = G2, (9)

Var
(
∥g∥2

)
= Var

(F∑
i=1

g2i

)
=

F∑
i=1

Var(g2i) =
F∑
i=1

2σ4
G

= 2F
(G√

F

)4

=
2G4

F
. (10)

For our case, this means the random noise vector has an
average square-norm ∥g∥2 of G2 ≈ 10.56 with a standard

deviation of G2 ·
√

2
F ≈ 0.539. This clearly shows that

statistically, the added noise vector will always have a norm
significantly larger (on the order of ∥g∥ ≈ G = 3.25) than
the unit embedding vector e = (e1, . . . , eF), which has
∥e∥ = 1. On top of being such a large vector, due to the
high dimensionality of the embedding space, the random
noise vector g is actually also essentially guaranteed to be
near-perpendicular to the embedding vector e, causing a
large directional change of the embedding vector no matter
what—no embedding vector can ever remain anywhere close
to where it started. To demonstrate this, we consider the
cosine of the angle θ between e and g, given by

cos θ =
e · g

∥e∥∥g∥
=

F∑
i=1

ei
gi
∥g∥

. (11)

Due to the statistical independence of each element,

E[cos θ] = E
[F∑
i=1

ei
gi
∥g∥

]

=

F∑
i=1

ei
�

�
�
�>

0

E
[

gi
∥g∥

]
= 0, (12)

due to the symmetrical isotropic Gaussian nature of g. The
corresponding variance is then

Var(cos θ) = E[(cos θ)2]−�����:0
E[cos θ]2

= E

[(F∑
i=1

ei
gi
∥g∥

)2
]

=

F∑
i=1

e2i E
[

g2i
∥g∥2

]
+

F∑
i ̸=j

eiej
�

����*
0

E
[
gigj
∥g∥2

]

=

F∑
i=1

e2i ·
1

F

=
1

F
, (13)

as e is a unit vector. In other words, the cosine similar-
ity between an embedding vector and the noise vector that
is added to it is on average 0 (perpendicular) with a very

narrow standard deviation of 1√
F

≈ 0.036, implying essen-
tially guaranteed near-perpendicularity. The average angle
β between the initial embedding vector e and the noise aug-
mented vector e+g

∥e+g∥ is thus approximately

β ≈ atan
(
∥g∥
∥e∥

)
≈ tan−1 G ≈ 72.9◦. (14)

The standard deviation of the angle β can empirically be
measured to be 1.94◦. This narrow distribution of β, i.e.
the distribution of angle separations that occur when using
the nominal Gaussian noise augmentation strategy, is shown
in Fig. 5. Also shown in the plot is the measured distribu-
tion of angle separations for matching and non-matching
image-label pairs of the ImageNet-1K validation set, i.e.
demonstrating the modality gap as well as the very thin sep-
aration that CLIP models provide between matching and
non-matching pairs. The positive distribution-widening ef-
fect of the nominal strategy of adding 15% uniform angle
noise from 45–75◦ is also shown (labeled “Gauss 3.25 +
Uniform” in Fig. 5). With this nominal strategy, for 85% of
all samples Gaussian noise of magnitude G = 3.25 is added,
and for the remaining 15% of samples (randomly chosen),
uniform angle noise of random magnitude 45–75◦ is applied.

E. Open Vocabulary Image Datasets
Three open vocabulary image datasets were collected

as part of this work, World, Wiki and Val3K, as described
in the following sections. All three datasets were anno-
tated both manually by humans and by a multimodal LLM
(cf. App. F),8 using one of five labels for each predicted ob-
ject noun—correct primary (1.0 points), correct secondary
(0.8 points), close primary (0.5 points), close secondary (0.4
points), and incorrect (0 points). The sum of all points is
divided by the number of images to get the final percent
accuracy prediction score. The suffixes -H and -L are used
for the datasets to signify which annotations are being used,
leading to five open vocabulary evaluation datasets, World-H,
World-L, Wiki-H, Wiki-L, and Val3K-L.

E.1. World Dataset

The World dataset was collected with the express inten-
tion of trying to curate a dense collection of both regular
and tricky object concepts. This included a specific focus
on trying to include images from around the world that have
never been on the internet (and thus cannot ever have been
trained by a CLIP model before). Tricky images include
ones that show: unusual objects, common object concepts
but in peculiar variations, deceptive objects that are one
thing but styled to look somewhat like another, and indirect
representations of objects, e.g. paintings, cartoons, posters,

8All except human annotations for Val3K.

0 10 20 30 40 50 60 70 80 90 100

Angle Between Vectors (°)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
is
tr
ib
ut
io
n

Non-matching IN1K
Matching IN1K
Gauss 3.25
Gauss 3.25 + Uniform

Figure 5. Comparison of angle separation distributions. A
plot of the distribution of embedding vector angle separations in
768-dimensional embedding space for matching and non-matching
image-label pairs from the ImageNet-1K validation set. Also shown
is the distribution of angle separations between original and noise-
augmented text embeddings for both the pure Gaussian and Gaus-
sian with uniform strategies. The dashed vertical line shows exactly
perpendicular vectors that are thus mathematically uncorrelated.

sculptures, stuffed toys, drone show patterns, and such. A to-
tal of 12 people collected 85.3% of the images from original
photographs in 10 countries of the world (Australia, Aus-
tria, England, France, Germany, Netherlands, New Zealand,
Philippines, UAE, USA), with an active focus on covering as
wide and varied concepts as possible. The remaining 14.7%
of images were complemented from web sources to help
cover concepts (e.g. animals) that could not so readily be
manually photographed. The 272 images consist of 15.4%
animals, 10.0% plants, 16.2% wider scenes, 6.6% indirect
representations of objects, and 51.8% focused images of
objects. Both human (World-H) and LLM (World-L) annota-
tions are available for a wide variety of evaluated models.

E.2. Wiki Dataset

The Wiki dataset was collected by scraping 18 660 lead
images, i.e. ‘title images’, from Wikipedia articles. Lead
images often show a clear object concept that can be pre-
dicted and annotated, reducing the number of ambiguities
and grey zones that need to be dealt with consistently dur-
ing annotation. The scraped images had a noticeable bias
in their topic of focus towards plants, animals, and people,
so the sampling of the scraped images to a dataset size of
1 000 was guided by a probability-adjusted sampling method
to conservatively correct that bias. Both human (Wiki-H)
and LLM (Wiki-L) annotations were made for a variety of
evaluated models.

E.3. Val3K Dataset

The Val3K dataset aims to help quantify how well a model
is really doing on the ImageNet-1K validation set, if it is not
forced to output lower probability classifications in order to
align with the class names of the dataset. The dataset was
collected by sampling 3 random validation images (out of
the 50 available) for each of the 1 000 ImageNet-1K classes.
This led to a dataset of 3 000 images of mixed content. LLM
annotations were made on all 3 000 images to obtain Val3K-
L. As LLM annotations, especially when passing images
to a multimodal LLM, are attributed with cost, it was not
feasible to perform annotations on the full 50 000 ImageNet-
1K validation set.

F. Multimodal LLM Image Annotation
Due to the recent availability of some multimodal LLMs

with a very high level of image understanding, it is con-
ceivable to approximately quantify the performance of open
vocabulary classification models by auto-annotating their
predictions on image sets using these LLMs. This is par-
ticularly useful when it is just not feasible to perform the
required amount of annotations as a human. The general
process is as follows:

1. The chosen to-be-evaluated model(s) are inferenced on
the required dataset of images, and the predicted object
nouns are recorded (saving the top-k predictions for
each image is also possible).

2. For each individual image, the deduplicated set of all
predicted object nouns across all models is collected.

3. Groups of up to 15 of these predicted object nouns are
evaluated per call to the LLM, until every object noun
has up to 5 opinions from the LLM whether it is correct
or incorrect (present in the image or not).

4. A ground truth annotation is established per-image per-
predicted object noun based on the opinions that were
given by the LLM.

We use OpenAI GPT-4o, specifically gpt-4o-2024-05-
13 with a temperature of 0.2, maximum 512 output tokens,
and a cumulative probability threshold of 0.6 for nucleus
sampling. The chosen parameters reflect the stability and
consistency that is desired from the LLM. The prompt used
for auto-annotation is shown in Prompt 2 for an example
image. Asking the LLM to first provide a description of the
image allows it to adjust its summarized knowledge of the
image according to the provided object noun candidates, and
enhances its classification precision. For best results, 8–15
object noun candidates are always given, as providing too
few or too many has a small potential of causing inconsistent
annotations for fine-grained object nouns. With intentional

Prompt 2: Multimodal LLM image classification

SYSTEM: You are an AI assistant that has one and only one narrow
task that you should strictly adhere to at all times. Given an image
and an enumerated list of nouns by the user, you should first describe
everything you see in the image in complete detail, and then provide an
exactly matching enumerated list that for each noun provided by the user
(explicitly repeat the noun) strictly classifies the noun into one of exactly
two categories using a single word - Correct or Incorrect. Correct means
that at least one instance of the noun is visible in the image. Incorrect
means nothing very visually similar to the noun is visible in the image.
PROMPT: <image base64> (max 512×512)
1) african hunting dog
2) african wild dog
3) canis niger
4) cape hunting dog
5) hyena
6) hyena dog
7) lycaon pictus
8) mammal
9) mammalian
10) mexican hairless
11) mexican hairless dog
12) monkey dog
13) okapi

RESPONSE:
The image shows an African wild dog, also known as Lycaon pictus. It has
a distinctive coat with patches of black, brown, white, and yellow, large
rounded ears, and a slender body.
1) african hunting dog - Correct
2) african wild dog - Correct
3) canis niger - Incorrect
4) cape hunting dog - Correct
5) hyena - Incorrect
6) hyena dog - Incorrect
7) lycaon pictus - Correct
8) mammal - Correct
9) mammalian - Correct
10) mexican hairless - Incorrect
11) mexican hairless dog - Incorrect
12) monkey dog - Incorrect
13) okapi - Incorrect

randomization of candidate ordering and which candidate is
picked for which API request, each object noun is annotated
3–5 times, stopping before 5 if there is at least 80% agree-
ment in the LLM’s opinions. If the final agreement is at least
80%, then the corresponding opinion (correct or incorrect)
is taken as the final annotation, otherwise the annotation
is close. No primary vs. secondary classification is made
because it was experimentally deemed too inconsistent. Due
to the relatively unlikely condition required for the close
category (LLMs tend to be wrong more often than they are
inconsistent at a low temperature), it is systematically not
seen as often as for human annotations.

In order to verify that the LLM annotations are suffi-
ciently accurate to make inferences about the performance
of evaluated NOVIC models, we compared the prediction
scores computed on human and LLM annotations for 397
models on the World dataset (cf. Fig. 6). As expected, a clear
correlation and trend can be identified, whether close classifi-
cations are considered in the scores or not, with residual root
mean square errors of 1.1% in both cases. This suggests that
even though the absolute values of the scores do noticeably
differ, the coarse ordering it applies to models is similar.

55 60 65 70 75 80

World-L Correct (%)

60

65

70

75

80

W
or
ld
-H

C
or
re
ct

(%
)

Model
Trend

55 60 65 70 75 80

World-L Prediction Score (%)

65

70

75

80

85

W
or
ld
-H

P
re
di
ct
io
n
Sc
or
e
(%

)

Model
Trend

Figure 6. Comparison of human and LLM image annotations.
World-H scores are plotted against World-L scores for 397 models.
Top: Scores considering correct only. Bottom: Standard predic-
tion scores considering close classifications as well. For human
annotations, secondary classifications are scored as primary as the
LLM does not make that distinction.

G. Model Hyperparameters
The nominal values of various NOVIC hyperparameters

are shown in Tab. 5. The corresponding hyperparameter
value ranges that were covered in some configurations during
testing are also shown.

H. Qualitative Comparison
A qualitative comparison between NOVIC and image

tagging baselines on the World-H and Wiki-H datasets is pre-
sented in Fig. 7 and Fig. 8, respectively. RAM and Tag2Text
in general provide relatively coarse-grained classifications
and often miss central concepts in the images, focusing in-
stead on known nouns. For example, they output man for an
image where a man is presenting a banknote to the camera.

Hyperparameter Value Tested Range

CLIP model SigLIP B/16 See Tab. 4
CLIP mixed precision float16 float16
Noun frequency threshold 0 0–10
Multiset order m 3 1–4
LLM captions ✓ ✗/✓
Noise augmentation Mix Gauss, Uniform, Mix
Gauss noise magnitude 3.25 0.0–4.0
Uniform angle noise 45–75 Up to 0–85
Noise mix factor 15% 0–20%

Prefix tokens P 4 2–6
Hidden dim H 512 384, 512
Feedforward dim K 128 64–512
Num layers L 6 4–12
Num heads 8 8
Dropout 0.1 0.05–0.2
Bias parameters ✗ ✗/✓
Label smoothing ✗ ✗/✓
Beam width 10 1–10
Temperature 1 0.33–3

Epochs E 18 9–24
Batch size B 8192 512–16384
Optimizer AdamW AdamW, AdamP
Adam β1 0.9 0.9
Adam β2 0.95 0.95, 0.99
LR scheduler cosine cosine
LR warmup epochs 0 0–2
Initial LR 1.5e-3 5e-4 – 3e-3
Weight decay 0.1 0–0.3
Weight decay for 1D ✗ ✗/✓

Table 5. NOVIC hyperparameter values and tested ranges.
Batch sizes use gradient accumulation up to factor 16.

Tag2Text
RAM

RAM (FT0)
SigLIP NOVIC (FT2)
SigLIP NOVIC (FT0)

DFN-5B NOVIC (FT0)

stage (I)
stage (I)
stage (I)

trophy cup (P)
trophy cup (P)
firework (S)

water (S)
water (S)
water (S)

hippopotamus amphibius (P)
hippopotamus amphibius (P)

hippopotamus (P)

ladder (I)
pavement (S)
pavement (S)

bicycle rack (P)
bicycle rack (P)
bicycle rack (P)

bird (P)
bird (P)
bird (P)

parrot (CP)
mourning dove (I)

kea (P)

Tag2Text
RAM

RAM (FT0)
SigLIP NOVIC (FT2)
SigLIP NOVIC (FT0)

DFN-5B NOVIC (FT0)

man (P)
man (P)
man (P)

money (P)
money (P)

banknote (P)

palm tree (S)
palm tree (S)
palm tree (S)
wreath (P)
wreath (P)

florida key (P)

walk (I)
walk (I)

female person (P)
pavement (P)

pedestrian crossing (P)
pedestrian (P)

car (P)
car (P)
car (P)

roof rack (P)
roof rack (P)
roof rack (P)

Tag2Text
RAM

RAM (FT0)
SigLIP NOVIC (FT2)
SigLIP NOVIC (FT0)

DFN-5B NOVIC (FT0)

cake (P)
cake (P)
cake (P)

red velvet cake (P)
cake cake (I)

red velvet cake (P)

flower (P)
yellow (I)
flower (P)
jonquil (P)
jonquil (P)
daffodil (P)

animal (I)
blue (I)
blue (I)

stuffed toy (P)
stuffed toy (P)

genus staphylococcus (P)

panda (P)
red (I)

red cole (I)
red panda (P)
red panda (P)

ailurus (P)

Figure 7. Examples of open vocabulary classification on the World-H dataset. While RAM and Tag2Text select the most likely noun from
a limited vocabulary, NOVIC can freely output any object noun. Possible classification scores are correct primary (P), correct secondary (S),
close primary (CP), close secondary (CS), and incorrect (I). Correct primary and incorrect labels are highlighted in color. Output labels that
are not nouns are uninformative for the image and thus considered incorrect. Similarly, invalid nouns are also deemed incorrect.

Tag2Text
RAM

RAM (FT0)
SigLIP NOVIC (FT2)
SigLIP NOVIC (FT0)

DFN-5B NOVIC (FT0)

elk (P)
moose (CP)

stand (I)
buckskin (I)

moose wood (I)
elk (P)

man (S)
hand (S)
finger (S)

hearing aid (P)
hearing aid (P)
hearing aid (P)

tree (P)
tree (P)
tree (P)

brewers spruce (CP)
western larch (CP)
subalpine larch (P)

flower (P)
flower (P)
flower (P)

babies breath (P)
genus saponaria (CP)
genus gysophila (P)

Tag2Text
RAM

RAM (FT0)
SigLIP NOVIC (FT2)
SigLIP NOVIC (FT0)

DFN-5B NOVIC (FT0)

mantid (P)
photo (I)

mantis (P)
praying mantis (P)
praying mantis (P)

mantis (P)

grass (CS)
armadillo (P)
armadillo (P)

nine banded armadillo (P)
armadillo (P)
dasypus (P)

church (P)
church (P)
church (P)
church (P)
church (P)
aurora (P)

old (I)
tool (P)
tool (P)
spur (P)
spur (P)
spur (P)

Tag2Text
RAM

RAM (FT0)
SigLIP NOVIC (FT2)
SigLIP NOVIC (FT0)

DFN-5B NOVIC (FT0)

dog (P)
dog (P)
dog (P)

rhodesian ridgeback (P)
rhodesian ridgeback (P)
rhodesian ridgeback (P)

telescope (CP)
camera (CP)
camera (CP)

viewfinder (I)
viewfinder (I)

magic lantern (P)

monkey (P)
sit (I)

monkey (P)
gibbon (P)

hylobates syndactylus (CP)
gibbon (P)

roll (P)
roll on (I)

roll (P)
plaster bandage (P)

compression bandage (P)
compression bandage (P)

Figure 8. Examples for open vocabulary classification on the Wiki-H dataset. The images are an assortment of Wikipedia lead images,
covering a broad range of visual concepts. Possible classification scores are correct primary (P), correct secondary (S), close primary (CP),
close secondary (CS), and incorrect (I). Correct primary and incorrect labels are highlighted in color.

Configuration World-H Wiki-L IN1K

Prefix tokens P = 2 77.91 62.75 65.51
Prefix tokens P = 4* 78.92 63.97 68.11
Prefix tokens P = 6 78.03 64.15 68.08

Layers L = 4 77.23 62.38 63.85
Layers L = 6* 78.92 63.97 68.11
Layers L = 8 77.94 62.78 69.05
Layers L = 12 78.15 64.00 71.19

Hidden dim H = 384 76.97 61.65 65.77
Hidden dim H = 512* 78.92 63.97 68.11

Batch size B = 4096 78.14 63.73 66.76
Batch size B = 8192* 78.92 63.97 68.11
Batch size B = 16384 79.56 63.17 67.85

Epochs E = 12 77.33 63.30 66.33
Epochs E = 18* 78.92 63.97 68.11
Epochs E = 24 77.77 63.00 67.71

Table 6. Object decoder architecture and training hyperpa-
rameter ablations (% mean of 3). IN1K is the ImageNet-1K
classification performance of the trained decoders, and the asterisks
correspond to the nominal ablation baseline (FT2). World-H and
Wiki-L are prediction scores (described in Sec. 4) on the corre-
sponding datasets. See Sec. 4.2 for more ablation results.

Additionally, they sometimes output colors (e.g. blue, yel-
low), verbs (e.g. walk, stand), attributes (e.g. old), or merely
image style information (e.g. photo), thereby failing to con-
vey the actual content of the image. Even when given access
to the complete object noun dictionary (i.e. FT0), which is
an order of magnitude more comprehensive than the RAM
vocabulary, RAM predominantly predicts the familiar words
it was trained on rather than utilizing a broad range of object
nouns as labels.

On the other hand, NOVIC demonstrates strong capabili-
ties in precisely detecting and outputting the central object
of an image. Particularly when trained on the DFN-5B CLIP
model, NOVIC provides very fine-grained classifications and
can accurately identify Latin names of plants and animals
(e.g. genus gypsophila), names of very specific uncommon
objects (e.g. magic lantern), and even geolocations of pic-
tures (e.g. florida key) with high precision. Since NOVIC
generates free-form text during inference, it occasionally
fails to “stop in time” when outputting nouns however, re-
sulting in incorrect labels (e.g. cake cake, moose wood). This
issue is more prevalent for smaller CLIP models and lower
word frequency thresholds of the training dataset.

I. Decoder Architecture Ablations

Ablations of the core NOVIC model hyperparameters are
shown in Tab. 6. The results support the nominal choice of
hyperparameters, and suggest that slight gains could poten-

tially be made with a greater number of transformer layers
(although model generalization becomes slightly less reli-
able) and/or batch size. Refer to Sec. 4.2 for ablation results
pertaining to the training dataset, noise augmentation, and
CLIP model.

J. Image Classification Benchmark Trends
Tab. 1 shows the performance of NOVIC on various im-

age classification benchmarks, many of which are commonly
used to benchmark the zero-shot image classification perfor-
mance of CLIP models. In general, the trend can be seen
that the classification performance of NOVIC models slowly
drops off as the complexity and extensiveness of the training
data is increased towards the full size of the object noun
dictionary. This can be expected, as the object decoder has
increasingly many object concepts to learn as the frequency
threshold (FT) decreases, and these concepts are also in-
creasingly densely packed in the embedding space, making
them harder to accurately keep apart. An exception to this
general trend for some of the classification benchmarks is
the FT9 score, as the FT9 training data does not actually
always cover all of the target nouns required for each dataset.
This concretely means that 412/1000 ImageNet-1K classes,
17/200 Tiny ImageNet classes, 50/200 ImageNet-A classes,
and 37/200 ImageNet-R classes, cannot contribute to the fi-
nal classification score, resulting in the disadvantaged lower
scores marked with a dagger (†) in Tab. 1. Another excep-
tion to this general trend are the benchmarks that have few
and coarse-grained classes, such as Imagenette and CIFAR-
10. For these datasets, the performance depends less on the
diversity of object nouns seen during training, and more
on just the raw ability of the CLIP image encoder to pro-
duce an accurate and representative embedding, resulting in
fairly consistent classification performances irrespective of
the frequency threshold.

Training on large-scale datasets is also inherently not
deterministic—in particular also due to the randomized data
(e.g. noise) augmentation—and some natural variations in
the results will occur even if taking the mean of three training
runs. The object decoder has thousands to tens of thousands
of concepts to learn, and evaluating on a classification dataset
with e.g. 10–101 classes is probing a small fraction of what
the model has learned and is rewarded for by its training loss.
This means that two models with identical loss will always
have some concepts that they have learned better, and some
they have not learned quite as robustly. If that happens to
align with the classes required for a classification dataset,
the models then either do slightly better or slightly worse on
them. As previously mentioned, CIFAR-10 is an example of
all models doing about the same, up to natural variation, as
the dataset classes are very few and coarse, and the dataset
is relatively ‘easy’.

The classification results for the FT6 and FT2 NOVIC

Model Prompt-free
Classification

Text-only
Training

Seen
Objects

Used
Objects

RAM
Vocab

Primary
Score

Prediction
Score

Overall
Score

Tag2Text [29] ✗ ✗ 3 429 176 91.9 62.32 −15.29←−−−− 77.61 −13.49−−−−→ 64.12
RAM [76] ✗ ✗ 4 585 160 100.0 57.35 −17.65←−−−− 75.00 −15.86−−−−→ 59.14
RAM (FT2) ✗ ✗ 11 897 188 76.8 64.71 −11.61←−−−− 76.32 −13.84−−−−→ 62.48
RAM (FT0) ✗ ✗ 42 919 188 74.3 63.97 −11.03←−−−− 75.00 −13.84−−−−→ 61.16
NOVIC (FT9) ✓ ✓ 2 919 235 66.9 74.82 −2.79←−−−− 77.61 −3.22−−−−→ 74.39
NOVIC (FT6) ✓ ✓ 5 899 252 58.5 76.47 −2.21←−−−− 78.68 −1.01−−−−→ 77.67
NOVIC (FT2) ✓ ✓ 11 897 253 52.6 77.94 −1.62←−−−− 79.56 −0.64−−−−→ 78.92
NOVIC (FT0) ✓ ✓ 42 919 251 49.6 71.14 −3.53←−−−− 74.67 −1.10−−−−→ 73.57
NOVIC† (FT2) ✓ ✓ 11 897 263 55.5 86.77 −1.17←−−−− 87.94 −0.81−−−−→ 87.13
NOVIC† (FT0) ✓ ✓ 42 919 260 48.5 86.95 −1.32←−−−− 88.27 −0.37−−−−→ 87.90

Table 7. Open vocabulary World-H results in comparison to baselines (best of 3). Tag2Text and RAM achieve artificially high scores
by frequently outputting uninformative generic tags like man, tree, grass, plate, and often miss the actual intent of an image. Scores are
in %. RAM Vocab is the percent of samples whose predictions are in the core RAM vocabulary. Primary Score is the Prediction Score
when rewarding only primary predictions. Overall Score is the Prediction Score with ×0.5 applied to the score contributions of any coarse
predictions, effectively penalizing vague generic predictions. See Tab. 3 for Wiki-H results. †Using DFN-5B H/14-378 CLIP model.

models are similar for many of the benchmarks, as both
training sets have a reasonable size and comfortably cover
all required class names as target nouns. The dip in perfor-
mance for FT0 is more pronounced in general, due to the
near-quadrupling relative to FT2 of the number of object
concepts to learn, with the magnitude of the dip being ten-
dentially correlated to larger numbers of classes and more
fine-grained classification concepts overall. Both of these
factors result in smaller regions of the embedding space,
with less cosine distance between them, needing to be kept
apart. This, in combination with the more finely ‘concept-
subdivided’ embedding space of an FT0 model, leads to the
performance dip.

K. Additional Baseline Comparisons
In Tabs. 3 and 7, we compare (as described in Sec. 4.1)

NOVIC to the image tagging baselines Tag2Text [29] and
RAM [76], on the Wiki-H and World-H datasets respectively.
While the image tagging baselines require a list of noun can-
didates to be supplied at inference time and are trained on
image-text pairs, NOVIC performs completely prompt-free
image classification and is trained much more efficiently
on text-only data. Also, while NOVIC is trained primarily
on a synthetic text dataset constructed in a controllable and
unbiased manner from an entire English dictionary of object
nouns, the baselines train on ‘only’ 14M image-text pairs,
which have a significantly lower diversity of seen objects,
and do not offer any controllability of the distributions of
the nouns and image embeddings seen during training. Fur-
thermore, Tag2Text has a fixed set of labels, while RAM
attempts to provide some level of open vocabulary recogni-
tion beyond its nominal set of labels by distilling an image
encoder from the base CLIP image encoder. Due to the lim-

ited size of the used image-text dataset however, and noting
that the core set of labels was already constructed by parsing
these exact text captions, one can understand that the ‘open’
abilities of RAM are somewhat limited, i.e. RAM is not
truly open vocabulary in any way close to how one considers
CLIP to exhibit open vocabulary abilities.

In Tabs. 3 and 7, we can see that NOVIC has seen signif-
icantly more diverse object nouns during training (42 919
as opposed to less than a few thousand for the baselines),
and this is clearly reflected by its ability to use a wide ar-
ray of object nouns in its predictions—generally close to as
many unique nouns as there are images in the corresponding
dataset (e.g. 263 unique predictions for 272 images). The
tendency of the baselines not to provide such a diverse set
of predictions can be observed from their significantly lower
number of used objects. The restricted ability of RAM to per-
form open vocabulary classifications can also be identified
by observing the high proportion of its generated predictions
that belong to the core RAM vocabulary, even when pro-
vided with a large variety of object nouns to choose from
(e.g. FT0). RAM’s open vocabulary predictions are also
observed to have a significantly higher error rate than core
vocabulary predictions.

Three prediction scores are calculated for each model—
Prediction Score, the standard prediction score as defined in
Sec. 4, Primary Score, which does not reward secondary pre-
dictions and thereby emphasizes the important ability of the
model to focus on the actual intended object of an image,9

and Overall Score, which adjusts the standard prediction

9Note that even the primary score does not adequately penalize the
baselines’ scores in practice however, for example in instances where a
plate of food is the focus of the image and the baselines invariably predict
plate whereas NOVIC tends to predict the specific name of the dish.

score to reduce the reward for overly coarse predictions and
thereby emphasizes the important ability of the model to pro-
vide meaningful and informative fine-grained classifications.
It should be noted that both the primary and overall scores
can by definition only at most be equal to the standard pre-
diction score, so an ideal model that emits only fine-grained
primary predictions would have all three scores be equal.
We can observe that for NOVIC this is indeed almost the
case, whereas the baselines exhibit very significant drops in
score when penalizing secondary and coarse predictions as
such. Overall, this demonstrates that NOVIC produces high
quality predictions that are simultaneously diverse and fine-
grained yet at the same time accurate, as well as correctly
focusing on the main object of an image, all while being
real-time, prompt-free, truly open vocabulary, and very effi-
ciently trained with text only. This makes NOVIC a strong
improvement over the state-of-the-art baselines.

L. Ethical AI
Our open vocabulary image classifier may inherit biases

from the CLIP model it is trained on, and be similarly sus-
ceptible to adversarial attacks during inference, such as ma-
nipulated images misguiding label generation. Although the
object decoder is generative, it is trained in a constrained set-
ting, making it unlikely to produce sensitive outputs. Train-
ing the object decoder on the proposed text datasets is signif-
icantly more cost-effective than training alternative methods
such as RAM on large-scale image datasets. However, due
to the large amount of noise used, identifying the optimal
model configuration often necessitates many training runs,
each with an environmental impact.

