
GeneralizeFormer: Layer-Adaptive Model Generation across
Test-Time Distribution Shifts
– Supplementary material –

1. Algorithms
In this section, we provide the algorithms for source train-

ing and test-time generalization in Algorithm 1 and 2.

Algorithm 1 Training for GeneralizeFormer
Input: S = {Ds}Ss=1: source domains with corresponding
(xs,ys); θ: model parameters of backbone; ϕ: model pa-
rameters of Transformer; Btr: batch size during training;
Niter: the number of iterations.
Output: Learned θ,ϕ

1: for iter in Niter do
2: Mimicking the domain shifts

T ′← Randomly Sample ({Ds}Ss=1, t′);
S ′← {Ds}Ss=1 \ T

′;
3: Sample datapoints {(x(k)

s′ ,y
(k)

s′ )}Btr
k=1 ∼ S ′,

{(x(k)

t′ ,y
(k)

t′ )}Btr
k=1 ∼ T

′.
4: Meta-source stage:
5: Obtain meta-source model by training with the cross-entropy

loss (LCE) on meta-source labels and predictions θs′ =
min
θ

E(xs′ ,ys′ )∈S′ [LCE(xs′ ,ys′ ;θ)]

6: Meta-generalization stage:
7: Calculate meta-target features by zt′=fθs′ (xt′)
8: Calculate layer-wise gradients with unsupervised loss func-

tion by gl
t′=∂L(xt′)/∂θ

l
s′

9: Generate the meta-target batch norm and classifier parame-
ters of each layer by
θl
t′=ϕ(θl

s′ , zs′ ,g
l
s′), ∀l = 1, 2, · · · , L,

10: Optimize transformer ϕ by
ϕ = min

ϕ
E(xt′ ,yt′ )

[LCE(xt′ ,yt′ ;θt′)],θt′ = {θl
t′}Ll=1

11: end for

2. Additional Implementation details
We follow the training setup as [6] that includes dataset

splits and hyperparameter selection for our method. We uti-
lize Imagenet pretrained ResNet-18 and ResNet-50 models
for all domain generalization datasets, which is the same as
previous methods. In the main paper, ERM baseline refers
to evaluating the source-trained model directly on the given
target set without any model adjustment at test time [4].

Algorithm 2 Test-time Generalization by GeneralizeFormer
Input: T : target domain with Nt unlabeled samples xt;
θs,ϕs: source trained model parameters; Bte: batch size for
each online step at test time.

1: for iter in (Nt/Bte) do
2: Sample one batch of target samples from the target domain

{(x(k)
t }

Bte
k=1 ∼ T .

3: Calculate meta-target features by zt=fθs(xt)
4: Calculate layer-wise gradients with unsupervised loss func-

tion by gl
t=∂L(xt)/∂θ

l
s

5: Generate the meta-target batch norm and classifier parame-
ters of each layer by
θl
t=ϕ(θl

s, zt,g
l
t), ∀l = 1, 2, · · · , L,

6: Make predictions by p(y|x,θt),θt = {θl
t}Ll=1

7: end for

We describe the training and test-time procedures in the
algorithm section. We implement the lightweight ϕ model
with the PyTorch transformer encoder module and utilize
only one GPU to run the experiments on ResNet-18. Follow-
ing the common convention in the literature, e.g. [26, 32,
61], we utilize the given annotations of different domains
that are predefined in the common domain generalization
datasets. The only hyperparameter involved here is the num-
ber of layers that we have experimented with in Section 3.
We utilized identical settings and hyperparameters in the
main paper for all domain generalization benchmarks. We
utilize the train domain validation selection method to obtain
the model for test-time domain generalization same as [6].

For test-time generalization, we utilize a small batch
of 20 samples per batch. We generate the target model
parameters using the ϕ model and do not perform any
backpropagation on the source model, which helps in
reducing our computational time, as shown in Section
4 of the main paper. We do not have any additional
hyperparameters in our method and utilize PyTorch to
implement the method. For ResNet-18 models, we require
only one GPU and utilize NVIDIA 1080Ti. We conducted
all the experiments using five different random seeds. We
will release the code in the final version as a link to the

1



public repository.

Architecture of Generalizeformer. GeneralizeFormer
utilizes the transformer-encoder module from Pytorch with
8 layers, which consists of multi-head attention modules
and feedforward modules. The source parameters, target
features, and gradients are all formatted to the same
dimension as the source parameters (e.g., 512 for the last
block for ResNet-18) and then concatenated and utilized as
input tokens to the transformer. The attention is calculated
between these inputs to enhance each other according
to their relationships. We use the output features of the
source parameters as the generated target parameters, which
therefore match the dimensions of the source ones. At
inference, we directly replace the source parameters with
the generated parameters (Section 3 of the main paper).

Runtime Comparison. To show the efficiency of our
method, we provide comparisons of the runtime cost at both
training and test time, as well as the memory usage during
training. Our method requires more training time and param-
eters while having the lowest time cost at test time compared
with other test-time generalization methods. Due to the meta-
generalization stage, the proposed method takes 9 hours for
10,000 iterations utilizing a ResNet-18 and an NVIDIA Tesla
1080Ti GPU, which is longer than the ERM baseline of 6.5
hours. In addition, the ERM method based on ResNet-18
requires 11.18M memory. In contrast, our method requires
39M when utilizing the 8-layer transformer for parameter
generation. Our method can also be implemented with 4-
layer and 2-layer transformers, which consume 32% and
48% fewer memory with similar performance of 85.2% and
84.9% on PACS, respectively.

Moreover, we also provide the computational time com-
parisons during test-time generalization on different datasets
(Table 1), which is more important for test-time methods.
We consume less time than all alternative methods in Table 1
on four domain generalization datasets. This ability is ideal
for real-world deployment scenarios. The proposed method
even consumes less time on than the classifier adjustment
method [6] that only updates the classifier.
Datasets details. As mentioned in the main paper, we
perform the experiments on image classification problems
and demonstrate its effectiveness on six datasets namely:
PACS [8], VLCS [3], Office-Home [12], TerraIncognita [1],
Living-17 [11], Rotated MNIST and Fashion MNIST [10].
PACS [8] consists of 9,991 samples, 7 classes, and 4 do-
mains: Photo, Art-painting, Cartoon, and Sketch. VLCS [3]
consists of 10,729 samples, 5 classes and 4 domains: Pas-
cal, LabelMe, Caltech, and SUN. Office-Home [12] consists
of 15,5000 images, 65 classes and 4 domains: Art, Clipart,
Product, and Real-World. TerraIncognita [1] consists of
34,778 samples, 65 classes, and 4 domains: Location 100,

Location 38, Location 43, and Location 46. We followed [8]
for training and validation split. We follow the ‘leave-one-
out” protocol [2, 8] by evaluating the model on each target
domain with the parameters trained on the other source do-
mains. We utilize Living-17 [11], which contains 17 classes
with subclasses and 39780 images in source while 1700 im-
ages in target. Our performance is reported on the target
domain. For MNIST and Fashion-MNIST, we utilize the
rotated MNIST and rotated Fashion-MNIST and follow [10]
where the images are rotated by different angles for different
domains. We use the subsets with rotation angles from 15◦

to 75◦ in intervals of 15◦ as five source domains, and images
rotated by 0◦ and 90◦ as the target domains.

VLCS PACS Terra OfficeHome

Tent [13] 7m 28s 3m 16s 10m 34s 7m 25s
Tent [13] (BN) 2m 8s 33s 2m 58s 1m 57s
SHOT [9] 8m 09s 4m 22s 12m 40s 8m 38s
TAST [7] 10m 34s 9m 30s 26m 14s 22m 24s
T3A [6] 2m 09s 33s 2m 59s 2m 15s
This paper 47s 20s 52s 44s

Table 1. Computational time comparison on different datasets
with ResNet-18 as a backbone network during test-time general-
ization. The proposed method has better overall time consumption
than existing test-time adaptation and test-time domain generaliza-
tion methods.

3. Additional results and discussion
Why GeneralizeFormer works. To achieve good
performance in a target domain, obtaining target-specific
model parameters is crucial. Existing fine-tuning methods
approximate target parameters by MAP estimation with
an unsupervised loss (Section 3 of the main paper). Since
their approximation depends on the original parameter
quality and the number of target samples, errors accumulate.
Our method avoids this by directly inferring batch-specific
parameter distributions for each target batch in a feedfor-
ward pass. By doing so, our method is more practical for
scenarios where the number of test samples is small, the test
tasks are unknown, and a specific model cannot be selected,
as evident in Figure 4 of the main paper.

How Generalizeformer retains source data. The
motivation behind the method is online adaptation can
lead to error accumulation and forgetting due to iterative
backpropagations. To address this issue, we learn a trans-
former to directly generate the parameters for each target
batch individually. Therefore, the generated parameters
are specific to each target sample, without affecting other
batches. The source-specific parameters can also be recalled
by inferring model parameters using each source batch,
therefore avoiding source forgetting. We have added this



(a) (b)

Figure 1. Visualization of generated weights on PACS. Each row
visualizes a 28x28 filter from the batch norm layer for a sample
image from the photo domain. We show the (a) Generated weights
by GeneralizeFormer (b) Real weights.

discussion to the appendix.

Further clarification of adaptively generating layer-wise
model parameters per sample. Technically, we introduce
a transformer for parameter generation, whose attention
mechanism effectively aggregates useful knowledge in
source parameters and target features to avoid information
loss. We further consider layer-wise gradients per target
batch as input of the transformer, which indicates the
relationships between each layer of the source parameters
and each target batch. By doing so, the gradients guide
model generation for each layer and for different target
domains, batches, and even samples. This reduces error
transmission among target samples and layers while
enhancing the generalization ability across samples and
domain shifts. Meta-learning is utilized just to mimic
domain shifts to learn the ability of model generation; we do
not claim it as a contribution.

Visualization of generated weights. In Fig. 1, we provide
a visualization of the generated weights and real weights
through filters for the photo domain PACS dataset. The
filters obtained through the use of (a) generated weights are
identical to the filters obtained through the use of (b) real
weights.

Avoiding source forgetting across steps. In Fig. 2, we also
provide the visualization of retaining the source information
across adaptation steps. For this experiment, initially, at
test-time, the model is adapted to the sketch domain of the
PACS dataset. Next, the adapted model is re-evaluated on the
source domains: photo, art-painting, and cartoon to evaluate
the performance on the source domains. The conclusion is
similar to the ablation study of avoiding source forgetting
from the main paper, where our method retains the source
data.
Ablation of different inputs for ϕ network. As aforemen-
tioned in the methodology section, the ϕ model utilizes

Figure 2. Avoiding source forgetting across adaptation steps
of our method with ResNet-18. Each line graph represents the
accuracy on the source domains by utilizing the model which was
adapted on the sketch domain of the PACS dataset.

Inputs

Target features Layer gradients Source parameters Mean

ERM Baseline 79.6

This paper
✓ ✓ 82.0±0.3

✓ ✓ 82.7±0.3

✓ ✓ 81.9±0.3

✓ ✓ ✓ 85.5±0.2

Table 2. Ablation of different inputs for ϕ network for ResNet-
18 on PACS. Utilizing all three inputs achieves the best results,
followed by using the layer gradients and source parameters.

the target features, source-trained parameters and layer
gradients to generate the target parameters for test-time
generalization. In Table 2, to show the benefits of utilizing
these three inputs, we perform an ablation study by utilizing
a subset of the inputs in each experiment. Notably, all
inputs help in achieving the best performance. The source
parameters provide the basic ability of feature extraction
and classification learned during training. Without it, it
is difficult for fast model generation in one feedforward
pass (82.0% on PACS). The target features are essential
for tailoring the generated model to specific target data,
otherwise, it will cause unfitness (82.7%). Without the
gradients, it is difficult to adaptively control the generation
of parameters, leading to performance degradation (81.9%).
The integration of all these inputs results in a comprehensive
approach, leading to an improvement of 85.5% to effectively
and adaptively generate the target-specific parameters.

Analyses for only generating parameters of Batch
Normalization layers and classifiers. We generate only the
BN and classifier parameters for computational efficiency
since they are low dimensional with much fewer parameters.
Moreover, BN and classifiers have significant influences on
domain shifts. BN parameters affect the statistics of the



features, which contain style or domain information [5].
Previous methods like Tent also update BN parameters to
handle domain shifts. Additionally, classifier parameters
further handle the domain shifts at the semantic-level, as
also evident in T3A [6] and Xiao et al. [14]. Overall, by
generating BN and classifier parameters, we handle domain
shifts across different feature levels in an efficient way.

Generating Batch norms at different levels. From
Table 3 in the main paper, generating only the classifier
achieves 84.0% on PACS. We also conduct experiments
to generate the BN layer in different blocks, where we
get 84.5%, 84.8%, and 84.9% for generating blocks 5,
6, and 7, respectively. All these settings underperform
GeneralizeFormer (85.5%), showing the effectiveness of
adaptive generation of different layers.

Performance without meta-learning. We also investigate
the effectiveness of the meta-learning strategy in the
proposed method on PACS. Without meta-learning, the
performance with ResNet-18 degrades from 85.5% to
84.7%, while still performing better than ERM (79.6%) and
other baselines.

Models without Batch Normalization layers. We generate
parameters of both normalization and linear layers, where
the former seems to be more important in ResNet-based
models. However, next to affine parameters of Batch
Normalization layers, the generation of the linear layer also
performs well, achieving 84.0% and 65.7% on PACS and
Office-Home from Table 4 in the main paper. This indicates
that the proposed method can also be extended to handle
domain shifts within other model architectures without
Batch Normalization layers, e.g., MLP-based models or
Transformers akin to T3A [6].

Detailed results of limited batch sizes. As shown in the
main paper, we conducted experiments using limited batch
sizes. We also performed the challenging single-sample
generalization setting that widens its scope for deployment
in real applications. In Table 3, we provide detailed results
of small batch sizes ablation from the main paper. The
conclusion is similar to the main paper, where our method
performs better than Tent [13], and the difference increases
with batch sizes. For single sample, we are competitive
to [14] while achieving better performance than it for larger
batch sizes. By generating sample-specific models, the
proposed method can achieve generalization with limited
information.

Different losses for gradient information. As mentioned,
the method can utilize different unsupervised losses for gradi-
ent information. In Table 4, we utilize different unsupervised

Photo Art Cartoon Sketch Mean

Baseline 94.1 78.0 73.1 73.3 79.6±0.4

Test batch size = 1
Tent [13] 84.6 65.1 69.5 49.7 67.2±0.4

Xiao et al. [14] 95.8 82.0 79.7 78.9 84.1±0.2

This paper 95.5 83.4 80.4 74.9 83.6±0.2

Test batch size = 16
Tent [13] 93.6 80.2 76.9 68.4 79.8±0.3

Xiao et al. [14] 96.1 82.3 80.8 78.6 84.5±0.2

This paper 96.4 82.0 82.7 74.0 83.8±0.2

Test batch size = 64
Tent [13] 96.0 81.9 80.3 75.9 83.5±0.4

Xiao et al. [14] 96.0 82.5 81.3 78.8 84.7±0.2

This paper 96.8 84.5 83.6 76.3 85.3±0.2

Test batch size = 128
Tent [13] 97.2 84.9 81.1 76.8 85.0±0.5

Xiao et al. [14] 96.2 83.2 82.3 79.0 85.2±0.2

This paper 97.1 85.7 85.2 76.9 86.2±0.2

Table 3. Detailed results of limited batch sizes. GeneralizeFormer
performs better than Tent [13] with different batch sizes. The
proposed method achieves competitive results with [14] for small
batch sizes and outperforms it on larger batch sizes.

based losses such as [15] and loss through pseudo labeling.
Notably, unsupervised entropy minimization, which is the
default loss function, performs well. This study shows the
versatility of the proposed method, such that it can integrate
different losses. Consequently, the efficacy and applicability
of the method may be further improved by utilizing different
unsupervised loss functions in the future.

Strategies Photo Art Cartoon Sketch Mean

Memo [15] 96.2 82.1 81.5 70.0 82.5±0.4

Pseudo labels 96.6 80.4 82.7 75.2 83.7±0.3

Entropy Minimization 96.9 85.0 83.3 76.7 85.5±0.2

Table 4. Different losses for gradient information for ResNet-18
on PACS dataset. The proposed method can make use of different
losses for the gradient information to achieve good performance.
We utilize entropy minimization as the default for our experiments.



References
[1] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition

in terra incognita. In European Conference on Computer
Vision, pages 456–473, 2018. 2

[2] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-
bara Caputo, and Tatiana Tommasi. Domain generalization
by solving jigsaw puzzles. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2229–2238, 2019. 2

[3] Yuming Fang, Weisi Lin, Zhenzhong Chen, Chia-Ming Tsai,
and Chia-Wen Lin. A video saliency detection model in com-
pressed domain. IEEE transactions on circuits and systems
for video technology, 24(1):27–38, 2013. 2

[4] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learning
Representations, 2020. 1

[5] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE international conference on computer vision,
pages 1501–1510, 2017. 4

[6] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier
adjustment module for model-agnostic domain generaliza-
tion. In Advances in Neural Information Processing Systems,
volume 34, 2021. 1, 2, 4

[7] Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-
time adaptation via self-training with nearest neighbor infor-
mation. In International Conference on Learning Representa-
tions, 2023. 2

[8] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In IEEE International Conference on Computer Vision,
pages 5542–5550, 2017. 2

[9] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for
unsupervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, 2020. 2

[10] Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Ef-
ficient domain generalization via common-specific low-rank
decomposition. In International Conference on Machine
Learning, pages 7728–7738. PMLR, 2020. 2

[11] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry.
Breeds: Benchmarks for subpopulation shift. arXiv preprint
arXiv:2008.04859, 2020. 2

[12] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 5018–5027,
2017. 2

[13] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021. 2, 4

[14] Zehao Xiao, Xiantong Zhen, Ling Shao, and Cees G M Snoek.
Learning to generalize across domains on single test samples.
In International Conference on Learning Representations,
2022. 4

[15] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test
time robustness via adaptation and augmentation. In Advances

in Neural Information Processing Systems, volume 35, pages
38629–38642, 2022. 4


	. Algorithms
	. Additional Implementation details
	. Additional results and discussion

