Appendix

Fig. 1 gives some examples of segmentation results by
VM [1], Sli2Vol [7], Vol2Flow [2], and our method on
on the Decath-Liver, Decath-Spleen, Decath-Heart, and
Decath-Brain Tumours datasets [5], with GT given as ref-
erence. From the visual segmentation results, we can ob-
serve that the segmentation results produced by our method
are significantly better than those produced by the known
mask propagation methods on all the four datasets. In par-
ticular, our method generates accurate segmentation results,
while the other mask propagation methods generate false
negatives on the Decath-Liver and Decath-Brain Tumours
datasets. This demonstrates the effectiveness of our method.

Fig. 2 presents some visual results from various seg-
mentation foundation models (i.e., SAM [3] and Med-
SAM [4]) or interactive segmentation tools (i.e., Scrib-
blePrompt [6]) on the Decath-Liver, Decath-Spleen, and
Decath-Heart datasets [5]. From the visual segmentation
results, we can observe that the segmentation results pro-
duced by ScribblePrompt [0] are better than those produced
by the known segmentation foundation models on all the
three datasets. Fig. 3 shows some examples of segmentation
results generated by our method when combining differ-
ent key components on the Decath-Liver and Decath-Spleen
datasets [5]. From the visual segmentation results, we can
observe that the segmentation results are improved when
different key components are combined. This demonstrates
the effectiveness of the proposed components.
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Figure 1. Examples of segmentation results by different methods
on the Decath-Liver, Decath-Spleen, Decath-Heart, and Decath-
Brain Tumours datasets [5].
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Figure 2. Examples of segmentation results by various segmen-

tation foundation models or interactive segmentation tools on the
Decath-Liver, Decath-Spleen, and Decath-Heart datasets [5].
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Figure 3. Examples of segmentation results generated by our
method when combining different key components on the Decath-
Liver and Decath-Spleen datasets [5].
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