
Tuned Contrastive Learning — Supplementary

Chaitanya Animesh 1,2* Manmohan Chandraker1
1UC San Diego 2Otter.ai, Inc.

canimesh@ucsd.edu mkchandraker@ucsd.edu

1. Proofs for Theoretical Results

Proof for Lemma 1: Section 2 of the supplementary ma-
terial of SupCon paper [7] gives a clear proof for Lemma 1
(refer to the derivation of Lsup

out in that section).

Lemma 2 The gradient of the TCL loss per sample — Ltcl
i

with respect to the normalized projection network embed-
ding zi is given by:

∂Ltcl
i

∂zi
=

1

τ
(
∑

p∈P (i)

zp(P
t
ip −Xip − Y t

ip)︸ ︷︷ ︸
Gradient from positives

+
∑

n∈N(i)

znP
t
in︸ ︷︷ ︸

Gradient from negatives

)

(1)
where

Xip =
1

|P (i)|
(2)

P t
ip =

exp(zi.zp/τ)
D(zi)

(3)

Y t
ip =

τk1exp(−zi.zp)

D(zi)
(4)

P t
in =

k2exp(zi.zn/τ)
D(zi)

(5)

Proof

Ltcl
i =

−1

|P (i)|
∑

p∈P (i)

log(
exp(zi.zp/τ)

D(zi)
) (6)

=⇒ Ltcl
i =

−1

|P (i)|
∑

p∈P (i)

(
zi.zp
τ

− log(D(zi)) (7)

*Work done as part of Master’s Thesis at UC San Diego.

=⇒ ∂Ltcl
i

∂zi
=

−1

τ |P (i)|
∑

p∈P (i)

(
zp−

(
∑

p′∈P (i) zp′exp(zi.zp′/τ))

D(zi)

+
τk1(

∑
p′∈P (i) zp′exp(−zi.zp′))

D(zi)
−

k2(
∑

n∈N(i) znexp(zi.zn/τ))

D(zi)

)
(8)

=⇒ ∂Ltcl
i

∂zi
=

−1

τ |P (i)|

[∑
p∈P (i)

zp−

∑
p∈P (i)

(
∑

p′∈P (i) zp′exp(zi.zp′/τ))

D(zi)

+
∑

p∈P (i)

τk1(
∑

p′∈P (i) zp′exp(−zi.zp′))

D(zi)

−
∑

p∈P (i)

k2(
∑

n∈N(i) znexp(zi.zn/τ))

D(zi)

]
(9)

=⇒ ∂Ltcl
i

∂zi
=

−1

τ |P (i)|

[∑
p∈P (i)

zp−

∑
p′∈P (i)

(
∑

p∈P (i) zp′exp(zi.zp′/τ))

D(zi)

+
∑

p′∈P (i)

τk1(
∑

p∈P (i) zp′exp(−zi.zp′))

D(zi)
−

∑
p∈P (i)

k2(
∑

n∈N(i) znexp(zi.zn/τ))

D(zi)

]
(10)

1

=⇒ ∂Ltcl
i

∂zi
=

−1

τ |P (i)|

[∑
p∈P (i)

zp−

∑
p′∈P (i)

(|P (i)|zp′exp(zi.zp′/τ))

D(zi)

+
∑

p′∈P (i)

τk1(|P (i)|zp′exp(−zi.zp′))

D(zi)

−
|P (i)|k2(

∑
n∈N(i) znexp(zi.zn/τ))

D(zi)

]
(11)

=⇒ ∂Ltcl
i

∂zi
=

−1

τ |P (i)|

[∑
p∈P (i)

zp−

∑
p∈P (i)

(|P (i)|zpexp(zi.zp/τ))
D(zi)

+
∑

p∈P (i)

τk1(|P (i)|zpexp(−zi.zp))

D(zi)
−

|P (i)|k2(
∑

n∈N(i) znexp(zi.zn/τ))

D(zi)

]
(12)

=⇒ ∂Ltcl
i

∂zi
=

−1

τ

[∑
p∈P (i)

zp
|P (i)|

−

∑
p∈P (i)

(zpexp(zi.zp/τ))
D(zi)

+
∑

p∈P (i)

τk1(zpexp(−zi.zp))

D(zi)

−
k2(

∑
n∈N(i) znexp(zi.zn/τ))

D(zi)

]
(13)

=⇒ ∂Ltcl
i

∂zi
=

1

τ

[∑
p∈P (i)

zp

(
exp(zi.zp/τ)

D(zi)
− 1

|P (i)|

− τk1exp(−zi.zp)

D(zi)

)
+

∑
n∈N(i)

zn
k2exp(zi.zn/τ)

D(zi)

]
(14)

This completes the proof.

Theorem 1 For k1, k2 ≥ 1, the magnitude of the gradient
from a hard positive for TCL loss is strictly greater than the
magnitude of the gradient from a hard positive for SupCon
and hence, the following result follows:

|Xip − P t
ip + Y t

ip|︸ ︷︷ ︸
(TCL’s hard positive gradient)

> |Xip − P s
ip|︸ ︷︷ ︸

(Supcon’s hard positive gradient)

(15)

Proof As the authors of [7] show in Section 3 of their
supplementary (we also mention the same in our main
paper in Section 3.1) that the gradient from a positive while
flowing back through the projector into the encoder reduces
to almost zero for easy positives and |P s

ip − Xip| for a
hard positive because of the normalization consideration
in the projection network combined with the assumption
that zi.zp ≈ 1 for easy positives and zi.zp ≈ 0 for hard
positives. Proceeding in a similar manner, it is straightfor-
ward to see that the gradient response from a hard positive
in case of TCL is |P t

ip − Xip − Y t
ip|. We don’t prove this

explicitly again since the derivation will be identical to
what authors [7] have already shown. One can refer section
3 of the supplementary of [7] for details.

Now, because k1, k2 ≥ 1, it is easy to observe from equa-
tions 6 and 14 of our main paper that,

P t
ip < P s

ip (16)

And from equation 15 of our main paper:

Y t
ip > 0 (17)

Hence, the result follows. This completes the proof.

Theorem 2 For fixed k1, the magnitude of the gradient re-
sponse from a hard negative for TCL loss — P t

in increases
strictly with k2.

Proof
P t
in =

k2exp(zi.zn/τ)
D(zi)

(18)

=
k2exp(zi.zn/τ)

D1(zi) + k1D2(zi) + k2D3(zi)
(19)

where
D1(zi) =

∑
p′∈P (i)

exp(zi.zp′/τ) (20)

and
D2(zi) = (

∑
p′∈P (i)

exp(−zi.zp′)) (21)

and
D3(zi) = (

∑
n∈N(i)

exp(zi.zn/τ)) (22)

=
exp(zi.zn/τ)(

D1(zi) + k1D2(zi)
)
/k2 +D3(zi)

(23)

It is now easy to observe that for a fixed k1, P t
in increases

strictly with k2. This completes the proof.

2. Training Details
2.1. Supervised Setting

We first present the common training details used for
each dataset experiment in the supervised setting for Sup-
Con [7] and TCL. Except for the contrastive training learn-
ing rate, every other detail presented is common for Sup-
Con and TCL. As mentioned in our main paper, we train
for a total of 150 epochs which involves 100 epochs of
contrastive training for the encoder and the projector, and
50 epochs of cross-entropy training for the linear layer for
both the losses. AutoAugment [3] is the common data aug-
mentation method used except for FMNIST [9] for which
we used a simple augmentation strategy consisting of ran-
dom cropping and horizontal flip. We use cosine annealing
based learning rate scheduler and SGD optimizer with mo-
mentum=0.9 and weight decay=1e− 4 for both contrastive
and linear layer training. Temperature τ is set to 0.1. For
linear layer training, the starting learning rate is 5e − 1.
ResNet-50 [6] is the common encoder architecture used.
We use NVIDIA-GeForce-RTX-2080-Ti, NVIDIA-TITAN-
RTX and NVIDIA-A100-SXM4-80GB GPUs for our ex-
periments.

CIFAR-10 [8] Image size is resized to 32×32 in the data
augmentation pipeline. We use a batch size of 128. For both
SupCon and TCL we use a starting learning rate of 1e − 1
for contrastive training. We set k1 = 5000 and k2 = 1 for
TCL.

CIFAR-100 [8] Image size is resized to 32×32 in the data
augmentation pipeline. We use a batch size of 256. For both
SupCon and TCL we use a starting learning rate of 2e − 1
for contrastive training. We set k1 = 4000 and k2 = 1 for
TCL.

FMNIST [9] Image size is resized to 28 × 28 in the data
augmentation pipeline. We use a batch size of 128. For both
SupCon and TCL we use a starting learning rate of 9e − 2
for contrastive training. We set k1 = 5000 and k2 = 1 for
TCL.

ImageNet-100 [5] Images are resized to 224× 224 in the
data-augmentation pipeline and batch size of 256 is used.
For SupCon we use a starting learning rate of 2e−1 for con-
trastive training while 3e−1 for TCL. We set k1 = 4000 and
k2 = 1 for TCL. Note that we didin’t run experiments
on full ImageNet because we simply didn’t have the re-
sources to do so. As section 4.5 in the SupCon paper [7]
mentions that for ResNet-50 evaluations on ImageNet, a
batch size of 6144 (before augmentation) is used which
means the batch size is effectively 6144X2=12,288. For

such a large batch size with each image being 224X224,
we will require easily around 50 large sized (high mem-
ory) co-located GPUs/cloud TPUs or even more which
was just not possible for us and beyond our scope. In our
experiments, we avoided using momentum queue [2] or any
kind of memory bank to ensure a fair and direct compari-
son between the TCL and SupCon loss functions. Including
them would have obscured our ability to clearly assess how
the two loss functions perform against each other.

We also ran experiments with different seeds to calculate
95% confidence intervals for top-1 accuracies of SupCon
and TCL. For CIFAR-100 we repeated experiment 30 times
with a different seed each time. For CIFAR-10 and FM-
NIST we repeated experiment 5 times with different seeds
while for ImageNet-100, we repeated experiment 3 times
with unique seeds. The experiment settings for calculat-
ing the confidence intervals are same as used in Section
4.1 of our main paper. Tab. 1 shows the confidence inter-
vals obtained from the experiments and clearly suggests that
TCL performs consistently better than the Supervised Con-
trastive Learning.

Dataset SupCon TCL

CIFAR-10 96.16± 0.11 96.30± 0.10
CIFAR-100 78.45± 0.64 79.30± 0.45
FashionMNIST 95.42± 0.08 95.58± 0.11
ImageNet-100 85.73± 0.15 86.53± 0.15

Table 1. 95% confidence intervals for top-1 accuracies of SupCon
and TCL

We also present results for 250 epochs of training consti-
tuted by 200 epochs of contrastive training and 50 epochs
of linear layer training in Tab. 2. As we see, TCL performs
consistently better than Supervised Contrastive Learning
[7]. Note that we didn’t see any performance improvement
for FMNIST dataset for either SupCon loss or TCL loss by
running them for 250 epochs.

Dataset SupCon TCL

CIFAR-10 96.7 96.8
CIFAR-100 81.0 81.6
FashionMNIST 95.5 95.7
ImageNet-100 86.5 87.1

Table 2. Comparisons of top-1 accuracies of TCL with SupCon in
supervised setting for 250 epochs of training.

2.2. Hyper-parameter Stability

For the hyper-parameter stability experiments we have
presented most of the details in the main paper. We present

the learning rates and values of k1 and k2 used for TCL.
Remaining details are the same as the supervised setting ex-
periments.

2.2.1 Encoder Architecture

The starting learning rate for contrastive training is 1e − 1
for all the encoders except ResNet-101 for which we used
a value of 9e − 2. k1 = 5000 and k2 = 1 are the common
values used for all the encoders.

2.2.2 Batch Size

For batch sizes=32, 64, 128, 256, 512 and 1024 we set the
starting learning rates for contrastive training to 8e−3, 9e−
3, 1e− 1, 2e− 1, 5e− 1 and 1 respectively. For batch size
of 32 we used k1 = 5000 and k2 = 1. For batch size of 64
we used k1 = 7500 and k2 = 1. For batch size of 128 we
used k1 = 5000 and k2 = 1. For batch sizes of 256, 512
and 1024 we used k1 = 4000 and k2 = 1.

2.2.3 Projection Network Embedding (zi) Size

We used a common starting learning rate of 1e − 1 with
k1 = 5000 and k2 = 1 for all the projector output sizes.

2.2.4 Augmentations

For AutoAugment [3] method, we use a learning rate of
1e − 1 with k1 = 5000 and k2 = 1. For SimAugment [1],
we use a learning rate of 1e − 1 with k1 = 5000 and
k2 = 1.2.

2.3. Self-Supervised Setting

For the self-supervised setting, we reuse the code pro-
vided by [4] and we are thankful to them for providing all
the required details. The projector used for TCL is exactly
the same as SimCLR for fair comparison and consists of one
hidden layer of size 2048 and output size of 256. ResNet-
18 is the common encoder used for all the methods. We use
SGD optimizer with momentum=0.9 wrapped with LARS
optimizer [10] and weight deacy of 1e − 4. Augmentation
used is SimAugment [1] and is done in the same manner
as [4]. Gaussian blur is used for self-supervised setting.
We use NVIDIA-GeForce-RTX-2080-Ti, NVIDIA-TITAN-
RTX and NVIDIA-A100-SXM4-80GB GPUs for our ex-
periments.

CIFAR-10 [8] All methods do 1000 epochs of contrastive
pre-training on CIFAR-10 and images are reshaped to
32 × 32 in the data augmentation pipeline. We use batch
size=256, same as SimCLR. For TCL, we use a starting
learning rate of 4e − 1 for contrastive pre-training with
k1 = 1 and k2 = 1.5.

CIFAR-100 [8] All methods do 1000 epochs of con-
trastive pre-training on CIFAR-100 and images are reshaped
to 32× 32 in the data augmentation pipeline. We use batch
size=256, same as SimCLR. For TCL, we use a starting
learning rate of 4e − 1 for contrastive pre-training with
k1 = 1 and k2 = 1.5.

ImageNet-100 [5] All methods do 400 epochs of con-
trastive pre-training on ImageNet-100 and images are
rescaled to a size of 224 × 224. We use batch size=256,
same as used by SimCLR. For TCL, we use a starting learn-
ing rate of 4e − 1 for contrastive pre-training with k1 = 1
and k2 = 1.5.

3. Choosing k1 and k2 for TCL
We observe that a value of k1 in the range of 103 to 104

works the best with k1 = 4× 103 or 5× 103 almost always
working on all datasets and configurations we experimented
with. We generally start with these two values or otherwise
with 2 × 103 and increase it in steps of 2000 till 8 × 103.
We also observed during our experiments that choosing any
value less than 5 × 103 always gave improvements in per-
formance over SupCon loss. For most of our experiments
we set k1 to 4 × 103 or 5 × 103 and get the desired per-
formance boost in a single run. We found k2 to be useful
to compensate for the reduction in the value of P t

in caused
by increasing k1 and especially in self-supervised settings
where hard negative gradient contribution is important. For
setting k2, we fix k1 (which itself gives boost in perfor-
mance) and increase k2 in steps of 0.1 or 0.2 to see if we
can get further improvement. As we see, we generally keep
k2 = 1 for supervised settings but we do sometimes set it to
a value slightly bigger than 1. We set k2 to a higher value in
self-supervised settings as compared to supervised settings
to get higher gradient contribution from hard negatives. In-
creasing k1 didn’t help much in boosting the performance
in self-supervised setting (as we only had two positives per
anchor) and so we set it to 1. Increasing k2 also increases
the gradient response from positives to some extent by de-
creasing P t

ip and so, we found it sufficient to increase only
k2 and set k1 to 1 in self-supervised setting.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607. PMLR,
13–18 Jul 2020. 4

[2] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning,
2020. 3

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
3, 4

[4] Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi,
Nicu Sebe, and Elisa Ricci. solo-learn: A library of self-
supervised methods for visual representation learning. Jour-
nal of Machine Learning Research, 23(56):1–6, 2022. 4

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 3, 4

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[7] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In H.
Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 18661–18673. Curran Associates, Inc.,
2020. 1, 2, 3

[8] A. Krizhevsky and G Hinton. Learning multiple layers of
features from tiny images, 2009. 3, 4

[9] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017. 3

[10] Yang You, Igor Gitman, and Boris Ginsburg. Large
batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. 4

	. Proofs for Theoretical Results
	. Training Details
	. Supervised Setting
	. Hyper-parameter Stability
	Encoder Architecture
	Batch Size
	Projection Network Embedding (Lg) Size
	Augmentations

	. Self-Supervised Setting

	. Choosing Lg and Lg for TCL

