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Supplementary Material

A.1. Related Works

A solution to the inverse problem y = Ax + n, can
be probabilistically derived via the maximum likelihood es-
timation (MLE), defined as xML = argmaxx log p(y|x),
where p(y|x) := N (Ax, σ2

y) represents the likelihood of
observation y, ensuring data consistency. Nevertheless, if
the forward operator A is singular, e.g., when m < n, the
problem is ill-posed. In such cases, it is fundamentally in-
feasible to uniquely recover the signal set X using only the
observed measurements Y , even in the noiseless scenario
where Y = AX . This challenge arises due to the nontrivial
nature of the null space of A.

To mitigate the ill-posedness, it is therefore essential to
incorporate an additional assumption based on prior knowl-
edge to constrain the space of possible solutions. A predom-
inantly adopted framework that offers a more meaningful
solution is Maximum a Posteriori (MAP) estimation which
is formulated as xMAP = argmaxx[log p(y|x) + log p(x)],
where the term log p(x) encapsulates the prior information
of the clean image x.

The concept of priors in solving inverse problems has
evolved considerably over time. Classically, many method-
ologies relied on hand-crafted priors, which are analyti-
cally defined constraints such as sparsity [10, 31], low-rank
[14, 16], total variation [9], to name but a few, to enhance
reconstruction. With the advent of deep learning models,
priors have transitioned to being data-driven, yielding sig-
nificant gains in reconstruction quality [1,2,7,17,34]. These
priors, whether learned in a supervised or unsupervised
fashion, have been integrated within the MAP framework
to address ill-posed inverse problems. In the supervised
paradigm, the reliance on the availability of paired origi-
nal images and observed measurements also can potentially
limit the model’s generalizability. As a result, the trend has
shifted towards an increasing interest in unsupervised ap-
proaches, where priors are learned implicitly or explicitly
using deep generative models.

The strategies within the unsupervised learning
paradigm vary based on how the learned priors (a.k.a.

generative priors) are imposed. For instance, generators
Gθ in pre-trained generative models such as Generative
Adversarial Networks (GANs) [7, 18], Variational Au-
toencoders (VAEs) [1], and Normalizing Flows (NFs) [2],
are employed as priors to identify the latent code that ex-
plains the measurements, as described by the optimization
problem ẑ = argmaxz log p(y|Gθ(z)) + log p(z). In
such a way, the solution ẑ is constrained to be within the
domain of the generative model. This approach, however,
suffers from critical restrictions. In the first place, the low
dimensionality of the latent space is a major concern, as
it hampers the reconstruction of images that lie outside
their manifold. Additionally, it demands computationally
expensive iterative updates, given the complexity of
generator Gθ. Crucially, the deterministic nature of the
recovered solutions hinders the assessment of the reliability
of reconstruction. In fact, MAP inference fails to fully
capture the entire range of the solution spectrum, particu-
larly when solving an ill-posed problem that might hold
multiple solutions aligned closely with both the observed
measurements and prior assumptions.

To account for the variety within the solution domain and
to measure reconstruction certainty, the inverse problem is
tackled from a Bayesian inference standpoint. Bayesian in-
ference yields a posterior distribution, p(x|y), from which
multiple conditional samples can be extracted [6, 8]. Re-
cently, pre-trained diffusion models [19, 27] are utilized as
a powerful generative prior (a.k.a denoiser), in a zero-shot
manner, to effectively sample from the conditional poste-
rior [15, 21, 28]. The strategies for posterior (conditional)
sampling via diffusion models fall into two distinct ap-
proaches. In the first approach, diffusion models are trained
conditionally, directly embedding the conditioning infor-
mation y during the training phase [19, 26, 28]. However,
conditional training tends to require: (i) the assembly of a
massive amount of paired data and its corresponding con-
ditioning (x,y), and (ii) retraining when testing on new
conditioning tasks, highlighting the adaptability issues. In
the second approach, unconditionally pre-trained diffusion
models are employed as generative prior (a.k.a denoiser) to
perform conditional sampling for certain tasks. A primary
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difficulty, however, is how to impose data consistency be-
tween measurements and the generated images in each iter-
ation [11, 32]. For a comprehensive discussion on the vari-
ous approaches to this challenge, refer to [25].

A.2. Proposition

Proof. Consider an iteration of gradient descent, initialized
from x(0), on the least squares problem

x(t+1) = x(t) + αAT (y −Ax(t)).

Defining r(t) = y −Ax(t), it follows that

r(t+1) =
(
I− αAAT

)
r(t) = . . . =

(
I− αAAT

)t+1
r(0).

Hence,

x(t+1) = x(t) + αAT
(
I− αAAT

)t
r(0)

= x(0) + αAT
t∑

i=0

(
I− αAAT

)i
r(0)

= x(0) + α
t∑

i=0

(
I− αATA

)i AT r(0).

Subsequently, as long as 0 < α < 1/∥A∥2, from [5, Theo-
rem 16], we get

lim
t→∞

x(t) = x(0) + α
∞∑

i=0

(
I− αATA

)i AT r(0)

= x(0) +A†r(0).

This concludes the proof.

A.3. Closed-form solutions

Consider the following optimization problem in Eq. (2)

x̂0|t = argmin
x

1

2
∥y −Ax∥22 +

λ

2
∥x− x0|t∥22.

For the MRI reconstruction task, we express
Ax = M ⊙ (Fx) = M ⊙ w, where M repre-
sents the Cartesian equispaced mask, F is the Fourier
matrix, and ⊙ signifies element-wise multiplication.
Given this definition, and considering the identity
argminx∥x− x0|t∥22 = argminx∥Fx−Fx0|t∥22, then
the optimization problem in terms of w can be redefined as

ŵ0|t = argmin
w

1

2
∥M⊙w − y∥22 +

λ

2
∥w −w0|t∥22.

By expanding the L2-norm terms, we obtain

ŵ0|t = argmin
w

n∑

i=1

(miwi − yi)
2 + λ

n∑

i=1

(wi − wi
0|t)

2.

The solution for ŵ0|t is

ŵ0|t =
My + λw0|t

M+ λ
.

Given the relation x̂0|t = F−1ŵ0|t, we can then deduce

x̂0|t = F−1

(My + λFx0|t
M+ λ

)

Consider the range-null space decomposition defined in Eq.
(1) x̂0|t = A†y +

(
I−A†A

)
x0|t, where A† denotes the

pseudo-inverse of matrix A and I is the identity matrix. For
MRI, the forward operator is modelled as A = MF . An
important property that arises is AAA ≡ A, which sug-
gests that A itself can be represented as its pseudo-inverse
A†. With this property, the pseudo-inverse is then expressed
as A† = F−1M. Substituting this representation into our
original expression, we obtain

x̂0|t = F−1My +
(
I−F−1MF

)
x0|t.

Using the Fourier identity F−1F = I, we can further sim-
plify this to:

x̂0|t = F−1
(
My + (I−M)Fx0|t

)

A.4. Posterior mean

A.4.1 Posterior mean with additional measurement for
VPSDE

A notable SDE with an analytic transition prob-
ability is the variance-Preserving SDE (VPSDE)
[22, 30], which considers f(xt, t) = − 1

2β(t)xt and
g(t) =

√
β(t), where β(t) = βmin + t(βmax − βmin);

and its transition probability follows a Gaussian dis-
tribution of p0t(xt|x0) = N (xt;µtx0,σ

2
t I) with

µt = exp{− 1
2

∫ t

0
β(s)s} and σ2

t = 1 − exp{−
∫ t

0
β(s)s}.

Given such transition probability, we seek to derive the cor-
responding posterior mean with additional measurement.

Begin by representing the distribution p(xt|y) as
marginalizing out x0 conditioned on y:

p(xt|y) =
∫

x0

p(xt|x0,y)p(x0|y)dx0.

Differentiate w.r.t. xt on both sides

∇xt
p(xt|y) =

∫

x0

p(x0|y)∇xt
p(xt|x0,y)dx0.

With our new probability distribution model, the gradient
becomes

∇xt
log p(xt|x0) =

(µtx0 − xt)

σ2
t

.
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Inserting this into our previous equation, we have

∇xtp(xt|y) =
∫

x0

p(x0|y)p(xt|x0,y)
(µtx0 − xt)

σ2
t

dx0.

Simplifying the above equation, we get:

∇xtp(xt|y) =
1

σ2
t

[∫

x0

p(x0|y)p(xt|x0,y)µtx0dx0

−
∫

x0

p(x0|y)pt(xt|x0,y)xtdx0

]
.

Using Bayes’ rule and recognizing the marginalization, we
get:

∇xt
p(xt|y) =

1

σ2
t

[∫

x0

µtx0p(xt|y)p(x0|xt,y)dx0

− xtp(xt|y)
]
.

∇xt
p(xt|y) =

1

σ2
t

[µtp(xt|y)E[x0|xt,y]− xtp(xt|y)] .

∇xt
p(xt|y)

p(xt|y)
=

1

σ2
t

[µtE[x0|xt,y]− xt)] .

Using the identity property of logarithm ∇x log p(x) =
∇xp(x)/p(x), we can rewrite:

∇xt
log p(xt|y) =

1

σ2
t

[µtE[x0|xt,y]− xt] .

From this, the posterior mean becomes:

E[x0|xt,y] =
xt + σ2

t∇xt log p(xt|y)
µt

.

This shows that the posterior mean of x0 conditioned on
xt and y now incorporates a scaling by µt. By considering
µt =

√
αt and σ2

t = 1− αt, we have then

E[x0|xt,y] =
1√
αt

(xt + (1− αt)∇xt
log p(xt|y)).

A.4.2 Approximated Conditional Posterior Mean

E[x0|xt,y] =
1√
αt

(
xt + (1− αt)∇xt

log p(xt|y)
)

Considering Bayes’ rule we have

E[x0|xt,y] =
1√
αt

(
xt + (1− αt)(∇xt

log p(xt)

+∇xt
log p(y|xt))

)

By knowing that ∇xt log p(xt) ≃ −1√
1−αt

ϵθ(xt, t), we get

E[x0|xt,y] ≃
1√
αt

(
xt + (1− αt)

( −1√
1− αt

ϵθ(xt, t)

+∇xt
log p(y|xt)

))

which can be simplified further as

E[x0|xt,y] ≃
1√
αt

(
xt −

√
1− αtϵθ(xt, t)

+ (1− αt)∇xt
log p(y|xt))

)

From approximation made by DPS [11], that is,
∇xt

log p(y|xt) ≃ −1/σ2
y∇xt

∥y −A(x0|t)∥22, we then get

x̃0|t ≃
1√
αt

[
xt−

√
1− αtϵθ(xt, t)−ζ∇xt∥y−Ax0|t∥22

]
.

A.5. Theoretical Insight

Consider the outer-level objective in Eq. (2). This objec-
tive can be regarded as a method for estimating this expecta-
tion E[x0|xt,y], though it comes from different conceptual
frameworks. This is achieved by using an isotropic Gaus-
sian approximation of the denoising posterior.

Let us define the isotropic Gaussian approximation as
qt(x0|xt) = N (x0|x0|t, r2t I). We can derive that the ap-
proximate distribution qt(x0|xt,y) ∝ p(y|x0)qt(x0|xt)
for pt(x0|xt,y) ∝ p(y|x0)pt(x0|xt) is also Gaussian. The
mean of this distribution, Eq[x0|xt,y], can be obtained by
solving the optimization problem:

Eq[x0|xt,y] = argmax
x0

log qt(x0|xt, y)

= argmax
x0

[log p(y|x0) + log pt(x0|xt)]

= argmin
x0

[
∥y −Ax0∥2 +

σ2
t

r2t
∥x0 − x0|t|2

]

Furthermore, we know that in scenarios when σy = 0, the
following condition holds:

Eq[x0|xt,y] = Eq[A†Ax0 + (I−A†A)x0|xt,y]

= A†y + (I−A†A)Eq[x0|xt,y].

Now, given the following relation,

E[x0|xt,y] = E[x0|xt] +
1− αt√

αt
∇xt

log p(y|xt)

we then have

E[x0|xt,y] = A†y + (I−A†A)
(
E[x0|xt]

+
1− αt√

αt
∇xt

log p(y|xt)
)

= A†y + (I−A†A)
(
E[x0|xt]− ζ∇xt∥y −Ax0|t∥2

)
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Table 1. Comparison of R-BGDM against various supervised methods across multiple datasets.
Method BraTS-MRI fastMRI LIDC-CT

8× ACR 24× ACR 4× ACR 8× ACR 23 Proj
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DuDoRNet [35] 37.88 0.985 18.46 0.662 33.46 0.856 29.65 0.777 – –
SIN-4c-PRN [33] – – – – – – – – 30.48 0.895

R-BGDM 38.46 0.964 30.04 0.887 34.73 0.875 32.74 0.835 35.82 0.911

Table 2. Computation Times (Rounded to the nearest integer) to process 1000 samples for various algorithms across each task.
Algorithm Super-Resolution

(fastMRI brain)
Undersampled MRI

Rec (BraTS)
Undersampled MRI
Rec (fastMRI Knee)

Sparse-view CT Rec
(LIDC)

DPS [11] 6788 s 7112 s 9100 s —
DDNM [32] 3753 s 4467 s 4773 s 48011
DDS [12] 3921 s 4610 s 5162 s —
BGDM 6792 s 71 72s 9128 s 47987 s
R-BGDM 6944 s 7309 s 9334 s 48426 s

Two remarks regarding the last result from the equation
presented above are worth mentioning.

• Balanced Approach: This comprehensive approach
harnesses both the structural advantages of linear pro-
jections and the adaptive capabilities of non-linear op-
timization, providing a robust framework for tackling
complex inverse problems with high accuracy.

• Synergistic Effect: The corrections from the projec-
tion and gradient guidance can be mutually reinforc-
ing, where the initial projection provides a good start-
ing point that is refined by the gradient steps, leading
to potentially faster convergence and more accurate re-
construction.

A.6. Limitations

A few limitations remain that deserve further examina-
tion.

• Despite achieving superior reconstruction results com-
pared to other methods [11, 29, 32] and demonstrat-
ing more efficient sampling for medical imaging ap-
plications [12, 13, 20, 29], BGDM requires the tun-
ing of ζ and R-BGDM remains sensitive to both
hyper-parameters ζ and γ. Therefore, exploring a
more general hyperparameter tuning approach, such as
Bayesian optimization, would be beneficial.

• The BGDM algorithm performs similarly to ΠGDM
and DPS in terms of computational efficiency, as
shown in 2. However, the R-BGDM variant, while
more computationally intensive and requiring addi-
tional memory, significantly speeds up the sampling
process, as shown in our experiments. This highlights
a trade-off between increased computational resources
and faster sampling times.

• It should be noted that our CT simulation adheres to
the 2D parallel beam geometry assumption, aligning

with the baseline models used in other studies for di-
rect comparison. This differs from the more complex
3D cone-beam CT or helical CT simulations [24].

In future work, we plan to enhance the method for compati-
bility with 3D simulations and, adaptability to distributional
shifts [3, 4].

A.7. Additional Results

A.7.1 Comparing R-BGDM with Supervised Methods

Similar to other zero-shot inverse problem solvers [11, 23,
32], R-BGDM is superior to existing supervised methods
[33, 35] in these dimensions:

• R-BGDM can be a zero-shot solver for diverse tasks,
while supervised methods need to train separate mod-
els for each task and sampling patterns.

• R-BGDM demonstrates robustness to patterns of un-
dersampling and sparsification, whereas supervised
techniques exhibit weak generalizability.

• R-BGDM, akin to ScoreMed [29] and Score-MRI
[13], achieves notably enhanced results on medical
datasets compared to supervised methods.

These claims are substantiated by the experimental results
in Table 1. The results are reported from [13, 29].

A.7.2 Additional Visual Results
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Figure 1. Additional results from undersampled MRI reconstruction on Brats at 8x acceleration rate.
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R-BGDM
(ours)

DDNM

DPS

Figure 2. Additional results from undersampled MRI reconstruction on Brats at 24x acceleration rate.

6



References

R-BGDM
(ours)

DDNM

Figure 3. Additional results from sparse-view CT reconstruction on LIDC dataset with 23 projections.
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Figure 4. Additional reconstruction results for undersampled knee fastMRI at 4x acceleration rate.
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Figure 5. Additional results of our ablation study from undersampled MRI reconstruction on Brats at 24x acceleration rate.
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Figure 6. Additional results for super-resolution fastMRI at 16x acceleration rate.
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