DarSwin-Unet: Distortion Aware Architecture-Supplementary Material

Figure 1. Absolute relative error (lower better) in depth estimation as a function of test distortion for the six baselines: DarSwin-Unet, Swin-Unet [2], Swin(undis)-Unet, Swin-UPerNet [3, 6], Swin(undis)-UPerNet and DAT-UPerNet [5, 6]. All methods are trained on a restricted set of lens distortion curves (indicated by the pink shaded regions): (a) very low, (b) low, (c) medium, and (d) high distortion. We study the generalization abilities of each model by testing across all $\xi \in [0, 1]$. The squared relative error follows the same curves as the absolute relative error.

A. Depth estimation

A.1. Evaluation metrics

These detailed explanation of the evaluation metrics as shown in main text are defined as follows:

• Absolute relative error $= \frac{1}{|D|} \sum_{d \in D} \frac{|d^* - d|}{d^*}$

• RMSE =
$$\sqrt{\frac{1}{|D|} \sum_{d \in D} ||d^* - d||^2}$$

• Square relative error $= \frac{1}{|D|} \sum_{d \in D} \frac{||d^* - d||^2}{d^*}$

• log-RMSE =
$$\sqrt{\frac{1}{|D|} \sum_{d \in D} ||\log d^* - \log d||^2}$$

• $\delta_t = \frac{1}{|D|} |\{d \in D | \max(\frac{d^*}{d}, \frac{d}{d^*}) \le 1.25^t\}|, t \in \{1, 2, 3\}$

with D, d^* and d are respectively the set of valid depths, the ground truth depth and the predicted depth. We show the results for each metric similar to Fig. 9 in the main text.

A.2. Proposed sampling function

The goal is to identify a class of functions that is parameterized by a minimal number of parameters while still being capable of representing a wide variety of monotonic profiles between two interpolation points, (0,0) and (a,b). The initial approach involves using a power-law function, which is widely employed in engineering due to its simplicity and its ability to model relationships between unknown quantities with minimal parametrization.

$$p_n(\theta) = b\left(\frac{\theta}{a}\right)^n$$

The function p(0) = 0 and p(a) = FOV. This formulation generates convex curves $(n \ge 1)$ or concave curves (n < 1), with a derivative of zero or a non-existent derivative (tangent to the y-axis) at the origin. The underlying idea is that if a curve exhibits cuspidal behavior at one end, it should also be capable of exhibiting such behavior at the other end. To achieve this symmetry, two reflections are

Figure 2. log-RMSE (lower better) in depth estimation as a function of test distortion for the six baselines: DarSwin-Unet, Swin-Unet [2], Swin(undis)-Unet, Swin-UPerNet [3, 6], Swin(undis)-UPerNet and DAT-UPerNet [5, 6]. All methods are trained on a restricted set of lens distortion curves (indicated by the pink shaded regions): (a) Very low, (b) low, (c) medium and (d) high distortion. We study the generalization abilities of each model by testing across all $\xi \in [0, 1]$. RMSE follows the same curves as log-RMSE.

applied to flip the function vertically and horizontally.

$$q_m(\theta) = 1 - \left(1 - \frac{\theta}{a}\right)^m$$
,

which also satisfy the interpolation conditions. This approach can generate both convex $(m \ge 1)$ and concave (m < 1) curves. To combine these curves while ensuring the interpolation conditions remain satisfied, their convex combination is utilized.

$$g(\theta) = \lambda p_n(\theta) + (1 - \lambda)q_m(\theta), \qquad (1)$$

for $\lambda \in [0, 1]$. If m < 1, n > 1 or m > 1, n < 1, the resulting curve is clearly monotonic increasing. In cases where both m and n are either greater than 1 or less than 1, the curve remains monotonic. This family of curves is parameterized by the three parameters m, n, t.

A.3. Derivative of uniform camera model projection

The Unified camera model [1,4] as explained in the main text, *bounded* parameter $\xi \in [0, 1]^1$ projects the world point to the image as follows

$$r_d = \mathcal{P}(\theta) = \frac{f\cos\theta}{\xi + \sin\theta},$$
 (2)

where r_d is the radial distance from the image center, θ the incident angle lens, f the focal length and ξ the distortion parameter.

For a fixed θ (field of view), to prove that the extremities of the derivatives with respect to $g(\theta)$ for this projection function lie at $\xi = 0$ and $\xi = 1$, we first need to calculate $\frac{\mathrm{d}r_d}{\mathrm{d}q(\theta)}$. To do so, let us first compute $\frac{\mathrm{d}r_d}{\mathrm{d}\theta}$,

$$\frac{\mathrm{d}r_d}{\mathrm{d}\theta} = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{f\cos\theta}{\xi + \sin\theta}\right),$$
(3)
$$\frac{\mathrm{d}r_d}{\mathrm{d}\theta} = \frac{\frac{\mathrm{d}}{\mathrm{d}\theta} (f\cos(\theta))(\xi + \sin(\theta)) - (f\cos(\theta))\frac{\mathrm{d}}{\mathrm{d}\theta}(\xi + \sin(\theta))}{(\xi + \sin(\theta))^2}$$
(4)

$$\frac{\mathrm{d}r_d}{\mathrm{d}\theta} = \frac{-f(\xi\sin\theta + 1)}{(\xi + \sin(\theta))^2} \,. \tag{5}$$

To calculate $\frac{\mathrm{d}r_d}{\mathrm{d}g(\theta)}$, we can write $\theta = g^{-1}(g(\theta))$ and use chain rule :

 $^{{}^{1}\}xi$ can be slightly greater than 1 for certain types of catadioptric cameras [7] but this is ignored here.

$$\frac{\mathrm{d}\theta}{\mathrm{d}g(\theta)} = \frac{1}{g'(\theta)}\,,\tag{6}$$

$$\frac{\mathrm{d}r_d}{\mathrm{d}g(\theta)} = \frac{\mathrm{d}r_d}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}g(\theta)}, \qquad (7)$$
$$\frac{\mathrm{d}r_d}{\mathrm{d}g(\theta)} = \frac{-f(\xi\sin\theta + 1)}{g'(\theta)(\xi + \sin(\theta))^2}.$$

To prove that the extremities of the derivative of the projection function occur at $\xi = 0$ and $\xi = 1$, we need to prove that the derivative is monotonic, i.e. $\frac{d}{d\xi} \left(\frac{dr_d}{dg(\theta)}\right) > 0$, Fist we analysis this derivative, using the quotient rule, the derivative becomes:

$$\frac{\mathrm{d}}{\mathrm{d}\xi} \left(\frac{-f(\xi\sin\theta + 1)}{g'(\theta)(\xi + \sin\theta)^2} \right) = \frac{-f\sin\theta(\xi + \sin\theta)^2 + 2f(\xi\sin\theta + 1)(\xi + \sin\theta)}{g'(\theta)(\xi + \sin\theta)^4}$$

The denominator is $g'(\theta)(\xi + \sin \theta)^4$, since $g(\theta)$ is monotonic $g'(\theta) > 0$ and $(\xi + \sin \theta)^4 > 0$.

The numerator is:

$$N(\xi) = -f\sin\theta(\xi + \sin\theta)^2$$

$$+ 2f(\xi\sin\theta + 1)(\xi + \sin\theta).$$
(8)

Let us analyze this numerator, we want $N(\xi)>0$ as well,

$$2f(\xi\sin\theta + 1)(\xi + \sin\theta) > f\sin\theta(\xi + \sin\theta)^2, \qquad (9)$$

$$2(\xi\sin\theta + 1) > \sin\theta(\xi + \sin\theta) \text{ since } ((\xi + \sin\theta) \neq 0),$$

$$\xi\sin\theta - \sin^2\theta + 2 > 0,$$

$$2 > \sin\theta(\sin\theta - \xi).$$

Since $\theta = \text{FOV}/2$ it follows that $\theta \in [0, \pi]$, $\sin \theta \in [0, 1]$ and $\xi \in [0, 1]$. Therefore, the maximum value of $\sin \theta(\sin \theta - \xi)$ occurs at $\xi = 0$ and $\sin \theta = 1$.

Therefore, $\frac{d}{d\xi}(\frac{dr_d}{dg(\theta)}) > 0$, meaning the derivative

 $\frac{\mathrm{d}r_d}{\mathrm{d}g(\theta)}$ is monotonic with respect to ξ . Consequently, the maximum value of this derivative $\frac{\mathrm{d}r_d}{\mathrm{d}g(\theta)}$ occurs either at $\xi = 0$ or $\xi = 1$.

References

[1] João P. Barreto. A unifying geometric representation for central projection systems. 2006. 2

- [2] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. 2022. 1, 2
- [3] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. 2021. 1,
- [4] Christopher Mei and Patrick Rives. Single view point omnidirectional camera calibration from planar grids. 2007. 2
- [5] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. Vision transformer with deformable attention. 2022. 1, 2
- [6] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for scene understanding. 2018. 1, 2
- [7] Xianghua Ying and Zhanyi Hu. Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model. 2004. 2