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Figure 1. Absolute relative error (lower better) in depth estimation as a function of test distortion for the six baselines: DarSwin-Unet,
Swin-Unet [2], Swin(undis)-Unet, Swin-UPerNet [3, 6], Swin(undis)-UPerNet and DAT-UPerNet [5, 6]. All methods are trained on a
restricted set of lens distortion curves (indicated by the pink shaded regions): (a) very low, (b) low, (c) medium, and (d) high distortion.
We study the generalization abilities of each model by testing across all ξ ∈ [0, 1]. The squared relative error follows the same curves as
the absolute relative error.

A. Depth estimation
A.1. Evaluation metrics

These detailed explanation of the evaluation metrics as
shown in main text are defined as follows:

• Absolute relative error = 1
|D|

∑
d∈D

|d∗−d|
d∗

• RMSE =
√

1
|D|

∑
d∈D ||d∗ − d||2

• Square relative error = 1
|D|

∑
d∈D

||d∗−d||2
d∗

• log-RMSE =
√

1
|D|

∑
d∈D || log d∗ − log d||2

• δt = 1
|D| |{d ∈ D|max(d

∗

d , d
d∗ ) ≤ 1.25t}|, t ∈

{1, 2, 3}

with D, d∗ and d are respectively the set of valid depths,
the ground truth depth and the predicted depth. We show
the results for each metric similar to Fig. 9 in the main text.

A.2. Proposed sampling function

The goal is to identify a class of functions that is parame-
terized by a minimal number of parameters while still being
capable of representing a wide variety of monotonic profiles
between two interpolation points, (0, 0) and (a, b). The ini-
tial approach involves using a power-law function, which is
widely employed in engineering due to its simplicity and its
ability to model relationships between unknown quantities
with minimal parametrization.

pn(θ) = b

(
θ

a

)n

,

The function p(0) = 0 and p(a) = FOV. This formu-
lation generates convex curves (n ≥ 1) or concave curves
(n < 1), with a derivative of zero or a non-existent deriva-
tive (tangent to the y-axis) at the origin. The underlying
idea is that if a curve exhibits cuspidal behavior at one end,
it should also be capable of exhibiting such behavior at the
other end. To achieve this symmetry, two reflections are
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Figure 2. log-RMSE (lower better) in depth estimation as a function of test distortion for the six baselines: DarSwin-Unet, Swin-Unet [2],
Swin(undis)-Unet, Swin-UPerNet [3, 6], Swin(undis)-UPerNet and DAT-UPerNet [5, 6] . All methods are trained on a restricted set of
lens distortion curves (indicated by the pink shaded regions): (a) Very low, (b) low, (c) medium and (d) high distortion. We study the
generalization abilities of each model by testing across all ξ ∈ [0, 1]. RMSE follows the same curves as log-RMSE.

applied to flip the function vertically and horizontally.

qm(θ) = 1−
(
1− θ

a

)m

,

which also satisfy the interpolation conditions. This ap-
proach can generate both convex (m ≥ 1) and concave
(m < 1) curves. To combine these curves while ensuring
the interpolation conditions remain satisfied, their convex
combination is utilized.

g(θ) = λpn(θ) + (1− λ)qm(θ) , (1)

for λ ∈ [0, 1]. If m < 1, n > 1 or m > 1, n < 1, the
resulting curve is clearly monotonic increasing. In cases
where both m and n are either greater than 1 or less than
1, the curve remains monotonic. This family of curves is
parameterized by the three parameters m,n, t.

A.3. Derivative of uniform camera model projection

The Unified camera model [1,4] as explained in the main
text, bounded parameter ξ ∈ [0, 1]1 projects the world point
to the image as follows

rd = P(θ) =
f cos θ

ξ + sin θ
, (2)

1ξ can be slightly greater than 1 for certain types of catadioptric cam-
eras [7] but this is ignored here.

where rd is the radial distance from the image center, θ the
incident angle lens, f the focal length and ξ the distortion
parameter.

For a fixed θ (field of view), to prove that the extremities
of the derivatives with respect to g(θ) for this projection
function lie at ξ = 0 and ξ = 1, we first need to calculate
drd
dg(θ)

. To do so, let us first compute
drd
dθ

,

drd
dθ

=
d

dθ
(
f cos θ

ξ + sin θ
) , (3)

drd
dθ

=

d

dθ
(f cos(θ))(ξ + sin(θ))− (f cos(θ))

d

dθ
(ξ + sin(θ))

(ξ + sin(θ))2
,

(4)

drd
dθ

=
−f(ξ sin θ + 1)

(ξ + sin(θ))2
. (5)

To calculate
drd
dg(θ)

, we can write θ = g−1(g(θ)) and use

chain rule :
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dθ

dg(θ)
=

1

g′(θ)
, (6)

drd
dg(θ)

=
drd
dθ

dθ

dg(θ)
, (7)

drd
dg(θ)

=
−f(ξ sin θ + 1)

g′(θ)(ξ + sin(θ))2
.

To prove that the extremities of the derivative of the pro-
jection function occur at ξ = 0 and ξ = 1, we need to

prove that the derivative is monotonic, i.e.
d

dξ
(
drd
dg(θ)

) > 0,

Fist we analysis this derivative, using the quotient rule, the
derivative becomes:

d

dξ

(
−f(ξ sin θ + 1)

g′(θ)(ξ + sin θ)2

)
=

−f sin θ(ξ + sin θ)2 + 2f(ξ sin θ + 1)(ξ + sin θ)

g′(θ)(ξ + sin θ)4
.

The denominator is g′(θ)(ξ+sin θ)4, since g(θ) is mono-
tonic g′(θ) > 0 and (ξ + sin θ)4 > 0.

The numerator is:

N(ξ) = −f sin θ(ξ + sin θ)2 (8)
+ 2f(ξ sin θ + 1)(ξ + sin θ) .

Let us analyze this numerator, we want N(ξ) > 0 as
well,

2f(ξ sin θ + 1)(ξ + sin θ) > f sin θ(ξ + sin θ)2 , (9)
2(ξ sin θ + 1) > sin θ(ξ + sin θ) since ((ξ + sin θ) ̸= 0) ,

ξ sin θ − sin2 θ + 2 > 0 ,

2 > sin θ(sin θ − ξ) .

Since θ = FOV/2 it follows that θ ∈ [0, π], sin θ ∈
[0, 1] and ξ ∈ [0, 1]. Therefore, the maximum value of
sin θ(sin θ − ξ) occurs at ξ = 0 and sin θ = 1.

Therefore,
d

dξ
(
drd
dg(θ)

) > 0, meaning the derivative

drd
dg(θ)

is monotonic with respect to ξ. Consequently, the

maximum value of this derivative
drd
dg(θ)

occurs either at

ξ = 0 or ξ = 1.
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