
Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with
Weight Averaging - Supplementary Material

Ali Bahri* Moslem Yazdanpanah Mehrdad Noori Sahar Dastani
Milad Cheraghalikhani David Osowiechi Farzad Beizaee Gustavo A. Vargas Hakim

Ismail Ben Ayed Christian Desrosiers

ÉTS Montreal, Canada
International Laboratory on Learning Systems (ILLS)

1. Implementation
We used PyTorch to implement the core functionalities

of our approach. The codebase is structured into two main
parts: Pretrain and adaptation.
Pretrain. We begin by focusing on the initial pretraining
phase of the base models (Point-MAE, PointNet, DGCNN,
and CurveNet). During this phase, we pretrain the back-
bones in a fully supervised manner, following the standard
definition of Test-Time Adaptation (TTA). The pretraining
is conducted on clean datasets such as ModelNet, ShapeNet,
and ScanObjectNN. This phase ensures that the models are
adequately prepared for the subsequent adaptation steps.
Adaptation. After completing the pretraining phase, we
transition to the adaptation stage. In this phase, we only
update the Normalization Layers of the models using our
method, which is built upon the TENT algorithm. By se-
lectively adapting the normalization layers, we efficiently
adjust the models to handle corrupted data without requir-
ing full retraining. This targeted approach not only reduces
computational costs but also enhances the model’s ability to
generalize to different data distributions. The results of this
adaptation phase are directly reflected in the experimental
findings presented in this paper.

To ensure complete transparency and reproducibility of
our results, we have made all relevant materials publicly
available. This includes:

• The full source code for both Pretrain and Adaptation
phases;

• All log files containing the detailed results of our exper-
iments;

• Pretrained the base models for all backbones.

All these resources can be accessed through our code.
This repository includes everything needed to understand

*Correspondence to ali.bahri.1@ens.etsmtl.ca

our code, covering all aspects of the implementations and
the reproduction of the results. Moreover, the specific hy-
perparameters used for all backbones are comprehensively
outlined in Table 1.

2. Resource Overhead

Time. Our method builds on the TENT algorithm but
extends it by introducing multiple sampling variations Pv

during Test-Time Adaptation (TTA). While there may be
concerns about potential resource overhead, particularly re-
garding execution time, our method is designed to run in
parallel for all Pv. This parallelization allows the model
to adapt independently for each variation, significantly re-
ducing time costs compared to a sequential approach. The
comparison between parallel and sequential adaptations is
detailed in the Supplementary Material Section 3. To quan-
tify the computational cost, we evaluated our method on the
PointNet backbone, comparing it directly with TENT. Using
NV =6, the average adaptation time for TENT is approxi-
mately 21 ms, whereas our method required around 26 ms.
This marginal difference indicates that the parallelization
ensures minimal resource overhead, making our approach
highly efficient even with multiple sampling variations.

Table 1. Hyperparameters

Backbone Config Value

All Optimizer AdamW
All learning rate 1e-3
All Weight decay 0.0
All Momentum β = 0.9
All Iteration 1
All FPS 512, 1024
PointMAE-PointNet Batch size 128
DGCNN-CurveNet Batch size 16, 64

1

Method un
i

ga
us

s

ba
ck

g

im
pu

l

up
sa

m

rb
f

rb
f-i

nv

de
n-

de
c

de
ns

-in
c

sh
ea

r

ro
t

cu
t

di
sto

rt

oc
lsi

on

lid
ar

Mean

Po
in

t-
M

A
E

Source-Only 66.6 59.1 7.2 31.8 74.6 67.7 69.8 59.3 75.1 74.4 38.0 53.7 70.0 38.6 23.4 53.9

Ours (BN) 85.4 84.7 29.9 74.8 87.1 80.9 82.3 85.1 88.4 82.4 67.9 83.9 80.7 55.7 54.8 74.9

Ours (BN & LN) 85.0 83.9 33.0 74.6 87.0 80.9 82.3 85.1 88.0 82.7 66.9 84.0 80.5 56.2 55.3 75.0

Table 2. Top-1 Classification Accuracy (%) for all distribution shifts in the ModelNet-40C dataset.

Memory. Given that our method adapts only the learnable
parameters of the normalization layers, keeping the other
weights frozen and shared, it involves a limited number
of parameters in the adaptation process. For instance, in
the PointNet backbone, there are approximately 3,500,000
parameters, and we adapt only around 12,000 parameters,
which constitutes 0.3% of all parameters. Consequently,
when using NV =6, the memory resource overhead is ap-
proximately 1.8% of the whole backbone, which is negligi-
ble.

3. Additional Experiments

Parallel vs Sequential WA. We investigated two differ-
ent strategies to handle model adaptation across multiple
variations:

• Parallel Mode: After adapting the model using each
variation PV , the model is reset to its initial state be-
fore the next adaptation begins. The weights adapted
from each variation θv are stored individually. The
final model weights θavg are then calculated by averag-
ing all the adapted weights across the variations. This
approach enables the model to process each variation
independently, offering faster adaptation.

• Sequential Mode: In this method, the model does
not reset after each adaptation. Instead, the adapted
model from one variation serves as the starting point for
the next variation. This results in iterative adaptation,
where the model progressively refines its parameters
after each variation PV , creating a cumulative adap-
tation process. The final model weights θavg are then
calculated by averaging all the adapted weights across
the variations.

As shown in Figure 1, both modes offer similar performance
as the number of variations NV increases. However, since
speed and efficiency are critical for TTA, we select the par-
allel mode, as it allows for faster processing by adapting
the model simultaneously across all variations. This experi-
ment was conducted using the Point-MAE backbone on the
ModelNet-40C dataset.

2 4 6 8 10 12
Number of Sampling

76.50

76.75

77.00

77.25

77.50

77.75

78.00

78.25

78.50

Ac
cu

ra
cy

 (%
)

Parallel vs Sequential
Parallel
Sequential

Figure 1. Impact of Parallel vs Sequential on Accuracy

Source_only Jitter

Jitter+Sampling Variation

Sampling Variation

Source Only-Jitter Augmentation-Sampling Variation

40
45
50
55
60
65
70
75
80

Ac
cu

ra
cy

 (%
)

53.95

68.97
72.62

75.03

Accuracy of Different Augmentation Methods

Figure 2. Comparison between Sampling Variation and Different
Augmentations

Integration of Jitter and Sampling Variation. In this
experiment, we investigate the effect of combining jitter
augmentation with the sampling variation as a new strategy
P to generate model diversity in our method. As seen in
Figure 2, jitter is selected for this combination because it
shows the best performance among other augmentation tech-
niques (as noted in Figure 3 of the main paper). However,
while combining jitter with sampling variation yields better
results compared to using jitter alone, it does not surpass the
performance of our method when using sampling variation

Method un
i

ga
us

s

ba
ck

g

im
pu

l

up
sa

m

rb
f

rb
f-i

nv

de
n-

de
c

de
ns

-in
c

sh
ea

r

ro
t

cu
t

di
sto

rt

oc
lsi

on

lid
ar

Mean

C
ur

ve
N

et

Source-Only 67.3 77.1 7.6 47.6 70.1 78.6 80.6 79.2 88.1 77.0 68.8 78.6 77.6 35.5 26.5 64.0
SHOT [2] 75.5 78.3 22.4 61.1 68.7 72.9 69.1 62.3 64.7 39.2 31.0 30.6 27.1 10.7 8.0 48.1
DUA [3] 81.5 84.3 27.5 71.1 81.3 82.6 84.5 85.5 89.0 82.1 76.9 85.2 81.7 46.6 45.8 73.7
PL [1] 79.5 84.0 29.5 72.6 82.7 82.0 83.1 85.9 88.7 81.2 78.9 85.3 81.6 52.8 52.5 74.7

TENT [4] 80.9 84.9 29.0 73.9 83.8 83.1 85.5 85.2 89.3 83.0 79.8 85.8 83.6 50.2 51.0 75.3
Ours 80.9 85.6 30.0 74.7 83.9 83.2 84.3 86.1 88.7 82.8 81.2 85.7 82.7 56.3 56.4 76.2

Table 3. Top-1 Classification Accuracy (%) for all distribution shifts in the ModelNet-40C dataset.

Weight Average Normalization layers

NL1 (1, 1)

NLv(v, v)

NL2 (2, 2)
B1 B2 Bv

B
Is

adaptation
?

B1

B2

Bv

B1 B2 Bv
Yes

No

B
NL

Frozen backbone
(except for NL params)

B

Data Batch

Normalization Layer ,

BvBatch with variation

Normalized batch

Learnable
Parameters

+ mean(1, 2, …, v)

× mean(1, 2, …, v)

Adaptation

Test

Figure 3. Detailed diagram of our method’s Parallel mode.

exclusively.

Impact of Batch Normalization and Layer Normaliza-
tion. In Table 2, we investigate the effect of updating Batch
Normalization (BN) layers only versus updating both Batch
Normalization (BN) and Layer Normalization (LN) layers
during test-time adaptation. The results demonstrate that
updating only BN layers significantly improves performance
over the Source-Only baseline. Furthermore, updating both
BN and LN layers leads to a slight but consistent improve-
ment across most corruptions, resulting in a higher mean
accuracy (75.0%) compared to updating BN layers alone
(74.9%). The experiment was conducted with a batch size of
128 and 5 iterations, using PointMAE as the backbone. The
dataset used was ModelNet40-C, and weight averaging was
performed in parallel mode.

Evaluation on the CurveNet Backbone. In order to further

assess the robustness and generalizability of our method, we
conducted additional experiments using a different backbone
architecture, CurveNet, on the ModelNet-40C dataset. The
results are summarized in Table 3. As can be seen, our
method demonstrates consistent improvements over baseline
approaches, achieving a mean accuracy of 76.2%, which
is notably higher than TENT’s accuracy of 75.3%. The
improvements are particularly significant in corruptions like
occlusion (56.3%), and lidar (56.4%), where our method
consistently outperforms the other approaches.

Efficient Parallel Implementation. Figure 3 illustrates
the detailed implementation of our method in parallel mode.
When adapting only the normalization layers, we handle NV

variations Pv in parallel. For each sampling variation Pv,
our method adapts the corresponding normalization layers
independently. This means that the weights of the rest of the

network (the majority) are shared across variations, reducing
the memory overhead significantly. As shown in Figure 3, we
construct a “Weight Average Normalization Layer,” which
comprises the NV individual normalization layers.

During adaptation, all the variations are processed
through their respective normalization layers. After adap-
tation, the normalization layer parameters γ and β are then
averaged to produce the final set of normalized parameters.
With this technique, we avoid saving or reloading the back-
bone weights for each variation, which leads to memory
efficiency. For example, in the PointNet backbone, the nor-
malization layers constitute only 0.3% of the total network
parameters. Hence, by adapting only these layers, we reduce
the memory resource overhead to a mere 1.8% when using
NV = 6, compared to the 500% memory overhead of the
naive implementation.

References
[1] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient

semi-supervised learning method for deep neural networks.
In Workshop on challenges in representation learning, ICML,
volume 3, page 896. Atlanta, 2013. 3

[2] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In International conference on
machine learning, pages 6028–6039. PMLR, 2020. 3

[3] M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst
Bischof. The norm must go on: Dynamic unsupervised domain
adaptation by normalization. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
14765–14775, 2022. 3

[4] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 3

