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0.1. Diffusion Process Visualization

Fig 1 shows the source, target, and the decoded output
images through the diffusion process. Here, we show the
denoising through 75 DDIM steps. The z1000 · · · z0 images
in Fig 1 correspond to 0th, 30th, 50th, 65th, 70th, 73th,
and 75th DDIM step respectively. We observe initial steps
recover the basic structure of the swapped image while a
few later (65th to 75th) steps refine the image.

0.2. Effect on Number of Steps in DDIM

Existing diffusion-based works on face-swapping use
time-consuming denoising steps. DiffSwap [7] uses 200
steps with masked fusion at inference. DiffFace [3] uses
75 steps which consumes a huge amount of time (approx-
imately 9 hours to perform 1000 swaps) due to gradient
computation in their inference strategy. We use 50 steps to
compare the inference time in which we showed our method
performs a magnitude faster inference than DiffFace [3] and
roughly twice faster than DiffSwap [7]. Further, all the re-
sults we show in the main manuscript use 50 steps. How-
ever, to analyze the effect of the number of DDIM steps
with our algorithm, we show further analysis of qualitative
images with varying numbers of DDIM steps in Fig 2.

In contrast to existing methods that rely on complex in-
ference processes for face-swapping, often failing to pro-
duce satisfactory results and fail to transfer identity features
well with minimal denoising steps, our approach stands out
by achieving superior swapping outcomes even with as few
as 5 steps (see Fig. 3), which significantly reduces the com-
putational overhead, slashing the inference time to approxi-
mately one-tenth of the duration required for 50 steps.

0.3. Additional Implementation Details

Building upon the implementation details outlined in the
main manuscript, we provide additional specifications for
clarity. We adopt a pre-trained stable diffusion checkpoint,
akin to the framework introduced in [6], with a modifica-
tion involving 9 channels. We use AdamW optimizer with
learning rate 1e − 5 and other default parameters. Latent

size is 64× 64. The condition feature dimension D is 768.
In condition generation, the CLIP weight wclip, ID feature
weight wid, and the landmark feature weight wlm are 1.0,
10.0, and 0.05 respectively. The number of DDIM steps in
our training pipeline N = 4. The output image resolution
is 512× 512.

0.4. Additional Information on Face shape Augmen-
tation

To facilitate face shape augmentation, an image elas-
tic deformation approach [2, 4] based on Thin Plate Spline
(TPS) transformation [1] was employed. Specifically, we
first generate a 2D grid of points of the same size as the
face mask. Then, we set up a set of control net points O
on the grid. Next, we add random noise δ to control net
points O and obtain P . The intensity of the noise is con-
trolled by a scaling factor s to enable precise modulation.
By utilizing the two sets of control points, we can obtain an
interpolation function that acts on the entire mask, allowing
us to achieve our mask augmentation while ensuring coher-
ence and consistency in subsequent transformations. This
is crucial for enhancing diversity and realism in augmented
face shapes, providing smooth and continuous deformation
while preserving structural integrity. We use this face shape
augmentation to get the inpaint image in our pipeline. We
use a random scale s sampled uniformly from the range 0.5
to 1.

0.5. Additional Qualitative Results

We provide more qualitative comparison for Face Swap-
ping on CelebA dataset (Fig 4) and FFHQ dataset (Fig 5). In
the examples, we observe, our method produces smoother
boundaries and photo-realistic images. Unlike other works
which suffer in merging the swapped image and the target’s
hair and background, which often results in a visible merg-
ing boundary our method seamlessly blends the swapped
image as there is no separate step of merging. Moreover,
other works produce a lot of artifacts, especially in chal-
lenging situations such as extreme pose variations (E.g., last
row of Fig 4), and occlusions or accessories in source (E.g.,
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Figure 1. Denoising process visualization. The images shows the decoded output of noisy latents (D(zt)) through DDIM process.

Figure 2. Comparison for total number of denoising steps using DDIM with our model.

third last row of Fig 5).
Further, we provide additional head-swapping qualita-

tive images in Fig 6. Despite challenging masks, our ap-

proach is capable of producing realistic head swaps while
preserving the target pose and expression.



Figure 3. Comparison of the effect of total number of denoising steps using DDIM with other approaches. While both DiffSwap [7] and
DiffFace [3] are failing to transfer identity and making artifacts, our method produces superior swapped images even with 5 steps

0.6. Societal Impact

With the advancements in deep learning, creating
swapped face has become easier and social media platforms
have made it easier for them to spread rapidly. Everything
has two sides. If facial swapping technology is used for the
advancement of productivity, such as in movie scenes, it can
greatly enhance productivity. However, if this technology
is exploited by malicious individuals, face swapping may
pose a significant threat to society. We are committed to de-
veloping powerful face swapping technologies that have a
beneficial impact on society. The purpose of our research is
also to promote the healthy development of this technology.
Furthermore, we control the generation of vulnerable im-
ages in our method’s safety check via Stable Diffusion [5].



Figure 4. Qualitative comparison on CelebA dataset. Better viewed in Zoom



Figure 5. Qualitative comparison on FFHQ dataset. Better viewed in Zoom



Figure 6. Additional Head Swap outcomes. Better viewed in Zoom
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