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DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors for
Remote Sensing Change Detection

1. Related Work

1.1. Remote Sensing Change Detection

1.1.1 Classical change detection methods

Classical change detection methods in remote sensing can
be primarily categorized into three groups: (1) algebraic,
(2) transformation-based, and (3) classification-based tech-
niques.

Algebraic methods, including image differencing (Im-
ageDiff) [30], image regression (ImageRegr) [31], image
ratioing (ImageRatio) [30], and change vector analysis
(CVA) [35], rely on selecting thresholds to identify altered
areas. These methods, except for CVA, are relatively simple
to implement but cannot provide comprehensive matrices of
change information. Their reliance on threshold selection
remains a significant drawback.

Transformation-based methods, such as Principal Com-
ponent Analysis (PCA)[14, 15], Karhunen-Loève Trans-
form (KT)[30], Gramm–Schmidt (GS)[30], Multivariate
Alteration Detection (MAD)[34], Re-weighted Multivari-
ate Alteration Detection (IRMAD)[33], and Chi-square
transformations[30], aim to reduce data redundancy be-
tween bands and emphasize different information in derived
components. However, they often require threshold selec-
tion and encounter challenges in interpreting and labeling
change information on transformed images.

Contrarily, classification-based methods like post-
classification comparison [30], spectral–temporal combined
change analysis [30], and expectation–maximization algo-
rithm (EM) change detection [30], operate based on classi-
fied images. These methods heavily rely on the quality and
quantity of training sample data to produce accurate clas-
sification results. They offer the advantage of providing
change information matrices, mitigating external impacts
from atmospheric and environmental differences between
multi-temporal images. However, their modeling capacity
and change detection quality are limited compared to mod-
ern deep learning-based approaches.

1.1.2 Deep learning-based change detection methods

The current research on remote sensing change detection
has been significantly reshaped by deep learning owing
to its powerful feature extraction ability [1]. Initially,
it was primarily based on fully convolutional neural net-
works (CNNs) and did not utilize any form of pre-training;
instead, it solely relied on supervised learning from la-
beled data in an end-to-end fashion. Examples of such
approaches include Fully-Convolutional Early Fusion (FC-
EF)[13], Fully-Convolutional Siamese Concatenation (FC-
Siam-conc) [13], and Fully-Convolutional Siamese Differ-
ence (FC-Siam-diff) [13]. In the EF architecture, pre-
change and post-change images are concatenated before
passing them through the CNN, treating them as differ-
ent color channels. In the Siamese network architecture,
the encoding layers of the network are bifurcated into two
streams of equal structure with shared weights, and each
image is assigned to one of these streams. Subsequently, a
feature difference (FC-Siam-diff) or feature concatenation
(FC-Siam-conc) is applied before the final change classi-
fier. In many cases, the Siamese difference/concatenation
architecture has proven effective for change detection. Con-
sequently, it became commonly utilized in later works for
change detection purposes.

With the evolution of more potent CNN architectures
such as VGG [36], ResNet [19], DenseNet [21], and the
availability of their pre-trained models on large-scale nat-
ural image datasets like ImageNet, remote sensing meth-
ods employing transfer learning from natural images to re-
mote sensing images have emerged. For instance, DS-
IFN (deeply supervised image fusion network) [44], DAS-
Net (dual attentive Siamese network) [8], SemiCD (semi-
supervised change detection) [3], and ADS-Net (attention-
based deeply supervised network) [40] have utilized multi-
scale features from VGG16 and ResNet50 pre-trained on
ImageNet to train change detection networks.

The introduction of transformer networks [38], with
the core component being multi-head self-attention
(MHSA) [38] capable of capturing long-range context and
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relationships between different positions, has seen adop-
tion in remote sensing change detection. Inspired by the
Vision Transformer (ViT) [16] approach, where the input
image is divided into fixed-size patches forming tokens
that are then processed by MHSA, BIT [6] was adapted
for remote sensing change detection by operating on la-
tent feature representations obtained from ImageNet pre-
trained ResNet [19]. Furthermore, a recent work, Change-
Former [4], proposed a fully transformer network devoid
of 2D convolutions for change detection, achieving supe-
rior results compared to its counterparts. Later versions of
transformer networks, such as the Swin Transformer [28],
which substitutes the global MHSA with the shiftable win-
dow MHSA (WMHSA) to significantly reduce ViT’s com-
putational overhead, have also been adopted in remote sens-
ing change detection, as seen in SwinSUNet [43].

However, transformers tend to be data-hungry and typi-
cally require a well-pre-trained model to achieve better per-
formance. Most of the previously mentioned transformer
networks proposed for change detection utilize pre-trained
models on natural image datasets like ImageNet [24] and
ADE20k [46], or are randomly initialized. This is sub-
optimal because aerial images possess distinct characteris-
tics creating a significant domain gap compared to natural
images, including differences in view, color, texture, lay-
out, objects, and more. To bridge this gap, these methods
attempt to narrow it by further fine-tuning the pre-trained
model on the remote sensing image dataset. Nevertheless,
the systematic bias introduced by ImageNet pre-training has
a noticeable impact on performance [41].

With the emergence of large-scale aerial scene classi-
fication datasets (such as MillionAID [29], fMoW [12],
and BigEarthNet [37]), and access to publicly available
large-scale unlabeled remote sensing datasets from vari-
ous Earth observation programs, it is now possible to pre-
train CNN and transformer backbones on remote sensing
images. However, there have been few explorations in re-
mote sensing pre-training, and it is still not as renowned as
pre-training in the natural image domain. In Geographical
Knowledge-driven Representation learning (GeoKR) [26],
global land cover products are considered as labels and a
mean-teacher framework is used to alleviate the influences
of imaging time and resolution differences between RS im-
ages and geographical ones. The scarcity of large-scale re-
mote sensing datasets is mainly in terms of category labels
rather than images. Hence, it is promising to develop self-
supervised pre-training methods, and some related methods
have been developed.

For instance, SeCo [32] leverages seasonal changes to
enforce consistency between positive samples, which are
unique characteristics of aerial scenes. Meanwhile, in
Geography-Aware Self-Supervised Learning [2], temporal
information and geographical location are simultaneously

fused into the MoCo-V2 [10, 18]. Moreover, exploration
into remote sensing image colorization from multi-spectral
images [39] and spatial properties of remote sensing im-
ages [23] has also been conducted.

Although these self-supervised methods do not rely
on labeled data during pre-training, they still use paired
multi-temporal images (like SeCo [32]), access to paired
multi-band spectral images (as in remote sensing coloriza-
tion [39]), or require spatially aligned remote sensing im-
ages with known geo-locations (as in geography-aware-
ssl [2]). This limitation restricts their ability to easily har-
ness information from millions of off-the-shelf remote sens-
ing images.

Unlike existing self-supervised methods in remote sens-
ing, our research pioneers the use of DDPM [20], originally
designed for image synthesis in generative AI, as a pre-
training strategy for robust feature extraction from remote
sensing images. This innovative pre-training approach only
requires access to readily available remote sensing image
datasets. Upon pre-training the DDPM, we utilize it to ex-
tract feature representations that can be leveraged to train a
light-weight change detection model with annotated change
images. The extraordinary capacity of DDPM to model
complex training distributions more efficiently than other
generative models (such as Generative Adversarial Net-
works (GANs), Variational Autoencoders (VAEs), etc.) en-
ables the extraction of highly informative and compressed
feature representations of a give image. Our experiments
on multiple change detection datasets show that these rep-
resentations obtained from pre-trained DDPM are pivotal in
enhancing change detection performance significantly.
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Figure 2. Comparison of different state-of-the-art change detec-
tion methods on LEVIR-CD dataset: (a) Pre-change image, (b)
Post-change image, (c) FC-EF, (d) FC-Siam-diff, (e) FC-Siam-
conc, (f) DT-SCN, (g) BIT, (h) ChangeFormer, (i) DDPM-CD
(ours), and (j) Ground-truth. Note that true positives (change
class) are indicated in white, true negatives (no-change class) are
indicated in black, and false positives plus false negatives indi-
cates in red.

2. Additional qualitative change detection re-
sults

Besides the quantitative results, we visually present pre-
dicted change maps to highlight the effectiveness of the pro-
posed method compared to state-of-the-art methods. Figure
2, Figure 4, Figure 6, and Figure 8 display qualitative exam-
ples corresponding to the LEVIR-CD, WHU-CD, DSIFN-
CD, and CDD datasets, respectively. In these visualizations,
we represent the change class (positive class) in white, the
no-change class (negative class) in black, and incorrectly
predicted areas (false positives and false negatives) in red.
Therefore, fewer red areas in a method indicate better per-
formance in predicting both change and no-change classes.

For the LEVIR-CD dataset presented in Figure 2. The
first example depicts three building changes, while in the
second case, many buildings have appeared, resulting in nu-
merous building changes. In the first case, we can observe
that our DDPM-CD accurately captures all three build-
ing changes, while other methods like FC-EF, FC-Siam-
diff, FC-Siam-conc, BIT, and Changeformer either miss the
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Figure 4. Comparison of different state-of-the-art change detec-
tion methods on WHU-CD dataset: (a) Pre-change image, (b)
Post-change image, (c) FC-EF, (d) FC-Siam-diff, (e) FC-Siam-
conc, (f) DT-SCN, (g) BIT, (h) ChangeFormer, (i) DDPM-CD
(ours), and (j) Ground-truth. True positives (change class) are
indicated in white, true negatives (no-change class) are indicated
in black, and false positives plus false negatives indicates in red.

building in the left-middle or can only partially predict the
changes. When considering the second case, although most
previously proposed change detection methods can predict
most of the building changes, the predictions of DDPM-CD
are more accurate and have fewer red areas.

For the WHU-CD dataset shown in Figure 4, one with
multiple building changes and the other with two building
changes. In the first example, we can see that the change
predictions from our DDPM-CD are more accurate and
have sharper edges, while all the other methods struggle
to predict the changes appearing at the bottom and strug-
gling to differentiate building shadows with actual build-
ing parts. In the second case, which contains a very large
building change on the left, challenging to recognize, all
the other methods missed it, but our method was at least
able to partially predict the change. Additionally, there is
another change at the top, which was not predicted by any
of the previous methods except BIT. However, our method
has predicted most of the change area in that region and
performed better than the prediction from BIT.

Differing from building change detection, let’s now con-
sider the visual quality of predictions on general change de-
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Figure 6. Comparison of different state-of-the-art change detec-
tion methods on DSIFN-CD dataset: (a) Pre-change image, (b)
Post-change image, (c) FC-EF, (d) FC-Siam-diff, (e) FC-Siam-
conc, (f) DT-SCN, (g) BIT, (h) ChangeFormer, (i) DDPM-CD
(ours), and (j) Ground-truth. Note that true positives (change
class) are indicated in white, true negatives (no-change class) are
indicated in black, and false positives plus false negatives indi-
cates in red.

tection datasets like DSIFN-CD and CDD. We showcase
prediction results for two examples from the DSIFN-CD
dataset in Figure 6. The first case includes changes due
to highway construction, while the other contains changes
related to new buildings. Given the nature of highways
with numerous narrow and curved parts, all other methods
miss most of these changes because it’s challenging to pre-
dict due to the similarities in colors between highways and
forests. However, our method can easily differentiate be-
tween highway and forest regions, resulting in highly ac-
curate change predictions. In the second example, several
challenging-to-recognize building changes appear, and our
method accurately detects these regions better than all other
methods, particularly in the changes visible on the left.

We also present two examples from the CDD dataset in
Figure 8. The first example exhibits changes in buildings
and roadways. However, the post-change image was cap-
tured during the snow season, making those changes chal-
lenging to recognize and predict. As observed, all other
methods struggle to capture these changes, but our method
accurately predicts them. In the second example, the narrow
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Figure 8. Comparison of different state-of-the-art change detec-
tion methods on CDD dataset: (a) Pre-change image, (b) Post-
change image, (c) FC-EF, (d) FC-Siam-diff, (e) FC-Siam-conc, (f)
DT-SCN, (g) BIT, (h) ChangeFormer, (i) DDPM-CD (ours), and
(j) Ground-truth. Note that true positives (change class) are indi-
cated in white, true negatives (no-change class) are indicated in
black, and false positives plus false negatives indicates in red.

roadways and buildings visible in the pre-change image dis-
appear in the second image. While the building changes are
clearly visible, the narrow roadways, obscured by the for-
est, are challenging to predict. While state-of-the-art meth-
ods predict building change areas, they face difficulties with
the narrow and obscured roadways. However, our method
accurately predicts these narrow roadways, resulting in a
high-quality change map.

All of these qualitative comparisons underscore the ef-
fectiveness of our proposed DDPM-CD method compared
to the existing state-of-the-art methods. Moreover, it
demonstrates the extraordinary ability of DDPM to deliver
robust and discriminative features that are useful in down-
stream applications like change detection.



3. Ablation Studies
3.1. Ablation study on multi-timestep features

This ablation study investigates the impact of utiliz-
ing different multi-timestep features (t ∈ [0, T ]) from
the diffusion model on change detection performance.
We fine-tune the change detection classifiers using fea-
tures obtained at various timesteps t from the diffusion
model to identify the timestep range that provides op-
timal semantics for change detection. Table 1 illus-
trates how change detection performance on the validation
set varies when utilizing features sampled from different
timesteps: t = 5, 50, 100, (50 and 100), (50, 100 and 400),
and (50, 100, and 650) as inputs for training the hierarchi-
cal change classifier.

Our observations indicate that the most favorable change
detection performance across all datasets is achieved when
utilizing feature representations sampled within the range
of t ∈ [100, 400]. Moreover, combining feature representa-
tions from multiple time samples, such as t = 50, 100, and
400, further enhances change detection performance. Con-
sequently, we designate feature representations sampled at
t =50, 100, and 400 as the default configuration for multi-
timestep features, which is employed to report results on the
test sets of all datasets presented in Table ??.

3.2. Comparison of Computational Complexity

Table 2 compares the computational complexity of the
proposed DDPM-CD with the existing methods. We bench-
mark our method for pre-change and post-change images of
spatial resolution 256 × 256 and use an NVIDIA Quadro
RTX 8000 GPU.

Our DDPM has a total of 390.95 million trainable param-
eters. The hierarchical change classifier has 39.08 million
parameters if single-timestep features are used, 43.96 mil-
lion parameters if two timesteps are used, and 46.41 million
if three time-steps are used. Since we fine-tune only the hi-
erarchical change classifier and keep the DDPM frozen, the
total trainable parameters during the fine-tuning come from
the hierarchical change detector. DDPMs usually require a
higher number of parameters to enable their modeling capa-
bility, and more recent DDPMs have even higher parameter
counts.

When considering GLOPs and inference time, the
DDPM consumes 716.40 GLOPs per image pair and takes
about 28.75 ms per image pair for one step forward pass.
Since we utilize DDPM for feature extraction during fine-
tuning and inference, it requires 1-3 forward passes to ex-
tract multi-step features, whereas if we use it in the synthe-
sis, which usually involves 1000s of time-steps, it requires
×1000 times. For our best model, which utilizes features
corresponding to three time steps, it requires 3 × 716.40 =
2149.2 GLOPs and takes 28.75 × 3 = 86.25 ms. The hi-

erarchical change detector, which processes those features
and outputs a change map, requires 32.84 GLOPs and takes
2.56 ms when utilize features of three timesteps. Therefore,
for the best model, it requires a total of 2149.2 + 32.84 =
2182.04 GLOPs and takes 86.25 + 2.56 = 88.81 ms.

In comparison to other state-of-the-art methods, our
method exhibits higher counts of trainable parameters,
GLOPs, and inference time. This observation is under-
standable because the DDPM necessitates a large network
to enable its modeling power, allowing it to accurately cap-
ture the training distribution, unlike other architectures. We
believe that despite the higher number of parameters and
GLOPs, the final performance of our method outweighs
these metrics when compared to other state-of-the-art meth-
ods. Exploring ways to reduce its model size while retain-
ing its modeling capabilities and decreasing inference time
would be both intriguing and timely. Presently, the current
trend in diffusion models leans toward larger sizes, a direc-
tion driven by the demanding nature of handling extremely
complex input data distributions, the need for high-quality
image synthesis, and the increasing complexity of multi-
modal data in the natural image domain.

4. Results on LEVID-CD+ Dataset



Table 1. The ablation study on the timestep t used to extract multi-timestep feature representations. We show that combining feature
representations belonging to multiple timesteps improves the change detection performance on the val-set of LEVIR-CD, WHU-CD,
DSIFN-CD, and CDD.

Time step t
LEVIR-CD [7] WHU-CD [22] DSIFN-CD [45] CDD [25]

F1 IoU OA F1 IoU OA F1 IoU OA F1 IoU OA

5 89.71 81.35 99.15 91.57 84.46 99.19 93.87 88.39 96.09 91.24 83.89 91.24
50 90.66 82.90 99.23 92.74 86.47 99.31 94.17 88.99 96.29 93.78 88.28 98.60
100 90.50 82.65 99.21 92.78 86.54 99.31 94.95 90.39 96.77 94.32 89.25 98.72
150 90.08 81.95 99.18 92.34 85.77 99.27 94.59 89.74 96.54 94.34 89.29 98.75
50, 100 91.02 83.52 99.26 93.09 87.07 99.34 94.51 89.61 96.51 94.91 90.31 98.85
50, 100, 400 91.26 83.92 99.28 93.50 87.80 99.38 95.38 91.18 94.05 95.64 91.64 99.00
50, 100, 650 91.10 83.67 99.26 93.02 86.95 99.33 95.07 90.62 96.87 95.24 90.90 98.92

Table 2. Comparison of computational complexity of different methods. We consider pre-change and post-change images of size 256×256.

Method Trainable Params. (M) GLOPs Inference Time (ms)

SimSiam [9] 12.49 4.76 1.04
MoCo-v2 [11] 11.24 4.76 1.92
DenseCL [42] 11.69 4.76 2.66
CMC [5] 22.48 4.66 1.55
SeCo [32] 12.16 9.52 3.62

DDPM 390.95 716.40 28.75
CD w/ n = 1 39.08 25.99 1.85
CD w/ n=2 43.96 30.56 2.46
CD w/ n=3 46.41 32.84 2.56

DDPM-CD (n=1) 39.08 1× 716.49 + 25.99 = 742.48 1× 28.75 + 1.85 = 30.6
DDPM-CD (n=2) 43.96 2× 716.49 + 30.56 = 1458.97 2× 28.75 + 2.46 = 59.35
DDPM-CD (n=3) 46.41 3× 716.49 + 32.84 = 2175.46 3× 28.75 + 2.56 = 88.10



Table 3. Accuracy assessment for different binary CD models on the LEVIR-CD+ adapted from changemamba[17].

Type Method OA F1 IoU

C

FC-EF 97.54 70.42 54.34
FC-Siam-Diff 98.26 77.57 63.36
FC-Siam-Conc 98.24 78.44 64.53
SiamCRNN-18 98.56 82.71 70.52
SiamCRNN-34 98.61 83.08 71.05
SiamCRNN-50 98.68 83.46 71.61

SiamCRNN-101 98.67 83.20 71.23
DSIFN 98.70 84.07 72.52

SNUNet 97.83 74.70 59.62
HANet 98.22 77.56 63.34
CGNet 98.63 83.68 71.94

SEIFNet 98.66 83.32 71.41

T

ChangeFormerV1 98.38 79.51 65.98
ChangeFormerV2 98.36 80.20 66.94
ChangeFormerV3 98.44 80.65 67.58
ChangeFormerV4 98.01 75.87 61.12
ChangeFormerV5 98.23 78.23 64.24
ChangeFormerV6 97.60 72.71 57.12

BIT-18 98.58 82.28 69.90
BIT-34 98.68 83.34 71.44
BIT-50 98.67 83.40 71.53
BIT-101 98.60 82.53 70.26

TransUNetCD 98.66 83.63 71.86
SwinSUNet 98.92 85.60 74.82
CTDFormer 98.40 80.30 67.09

DDPM DDPM-CD 98.44 84.85 76.43
M MambaBCD-Tiny 99.03 88.04 78.63



5. Additional qualitative results

5.1. LEVIR-CD dataset

Figure 9, 10, 11, and 12 show additional qualitative re-
sults on LEVIR-CD dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Comparison of different state-of-the-art CD methods on
LEVIR-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 10. Comparison of different state-of-the-art CD methods on
LEVIR-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 11. Comparision of different state-of-the-art CD meth-
ods on LEVIR-CD dataset: (a) Pre-change image, (b) Post-
change image, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-
Conc [13], (f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4],
(i) ddpm-CD (ours), and (j) Ground-truth.
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Figure 12. Comparision of different state-of-the-art CD meth-
ods on LEVIR-CD dataset: (a) Pre-change image, (b) Post-
change image, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-
Conc [13], (f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4],
(i) ddpm-CD (ours), and (j) Ground-truth.



5.2. WHU-CD dataset

Figure 13, 14, 15, 16 and 17 show additional qualitative
results on WHU-CD dataset.

(a) (b) (c) (d) (e)
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Figure 13. Comparision of different state-of-the-art CD methods
on WHU-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 14. Comparision of different state-of-the-art CD methods
on WHU-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.

5.3. DSIFN-CD dataset

Figure 18, 19, 20 and 21 show additional qualitative re-
sults on LEVIR-CD dataset.

5.4. CDD dataset

Figure 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 show
additional qualitative results on LEVIR-CD dataset.
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(f) (g) (h) (i) (j)

Figure 15. Comparision of different state-of-the-art CD methods
on WHU-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16. Comparision of different state-of-the-art CD methods
on WHU-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17. Comparision of different state-of-the-art CD methods
on WHU-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 18. Comparison of different state-of-the-art CD methods on
DSIFN-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 19. Comparison of different state-of-the-art CD methods on
DSIFN-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 20. Comparison of different state-of-the-art CD methods on
DSIFN-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 21. Comparison of different state-of-the-art CD methods on
DSIFN-CD dataset: (a) Pre-change image, (b) Post-change im-
age, (c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13],
(f) DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 22. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 23. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 24. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 25. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 26. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 27. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 28. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 29. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 30. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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Figure 31. Comparison of different state-of-the-art CD methods
on CDD dataset: (a) Pre-change image, (b) Post-change image,
(c) FC-EF [13], (d) FC-Siam-Di [13], (e) FC-Siam-Conc [13], (f)
DT-SCN [27], (g) BIT [6], (h) ChangeFormer [4], (i) ddpm-CD
(ours), and (j) Ground-truth.
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