
A. Appendix
In this supplementary material, we provide additional

details and results that were not included in the main paper
but we evaluated during the study. This appendix contains
the following items,

• Appendix A.1 Detailed description of the FedMEM al-
gorithm. (Algorithm 3 and Algorithm 4)

• Appendix A.2 Additional details about the experimen-
tal setup.

• Appendix A.3 Additional details about the distribution
of lifelog data across clients (Fig. 10)

• Appendix A.4 Additional details on the confusion ma-
trix based qualitative analysis of lifelogger’s personal-
ized models and global model (FedAvg [30]).

• Appendix A.5 Description and the analysis of the ef-
fect of λ1 and λ2 when lifeloggers have partial partici-
pation.

• Appendix A.6 Analysis of the effect of different num-
ber of clusters on FedMEM+MSC.

• Appendix A.7 Additional metrics for the performance
analysis of FedMEM with other federated learning ap-
proaches (Tab. 3)

• Appendix A.8 Complexity analysis of FedMEM clus-
ter formation.

A.1. Description of FedMEM algorithm

FedMEM algorithm is the personalized federated learn-
ing algorithm. We have discussed two type of cluster-
ing strategy (1) Memorability Score Distribution based
Clustering (MSDC) of lifeloggers, (2) Algorithm 2 Model
Similarity-based Clustering (MSC) of lifeloggers.

A.1.1 FedMEM+MSDC

In this Algorithm 3, all available life-loggers first send their
memory score distribution (CDi) to the server for cluster-
ing. The server performs KL divergence to determine the
memory score similarity between pairs of clients, produc-
ing a similarity matrix KL[, ]. Hierarchical clustering is
then performed on this similarity matrix KL, dividing the
clients into Ck clusters. Each client initializes their model
from their respective cluster, such that if life-logger i be-
longs to cluster C, the initial model for life-logger i would
be WC. For each cluster, the Personalized Local U pdate
operation is performed, followed by the aggregation of lo-
cal models within each cluster. FedMEM+MSDC provides
a clustered federated learning approach in which lifeloggers

remain in their designated clusters without migrating be-
tween them, ensuring that clusters are fully isolated from
one another with no cross-cluster movements. Therefore,
no cross-cluster knowledge sharing occurs.

Algorithm 3 FedMEM+MSDC
1: Initialize: ω0

0 = ω0
1 = . . .= ω0

C = ω0, T , L
2: Server receives distribution of the event memory scores {CD0,CD1, . . . ,CDN −1}

form N lifeloggers.
3: C←MSDC(CD0, CD2, . . ., CDN −1) ▷ Call Algorithm 1
4: for t← 0 to T do
5: M← Select clients(N )
6: Server sends the ω t

c to the selected lifeloggers ▷ ω t to the new lifelogger
7: for M lifeloggers in parallel do ▷ Lifelogger assigned to any of the k

clusters. c ∈ C
8: θi = Personalized Local Update(ω t

c)
9: end for

10: All lifeloggers send θ t
i to their respective clusters.

11: for Lgi ∈M do in all C clusters perform the cluster update
12: ω t

c← ω t
c + riθ

t
i ▷ Equation (8)

13: end for
14: end for
15: procedure PERSONALIZED LOCAL UPDATE(ω̄)
16: for l ← 0 to L do
17: θ

t,l+1
i = θ

t,l
i −αi∇ fi(θ

t,l
i )−αiη(θ t,l

i −ω t
c). ▷ Equation (6)

18: end for
19: end procedure

A.1.2 FedMEM+MSC

In Algorithm 4, initially, all available life-loggers do not
have any information about the clusters. They start by ini-
tializing their local models with the same global model. In
the initial round (t=0), the server sends the global model ω0

to the selected life-loggers. In subsequent rounds, if a life-
logger has been assigned to a cluster, the server sends the
cluster model to that life-logger. If a new life-logger joins
in a later round and does not belong to any cluster, their
model is initialized with the global model. Similar to Al-
gorithm 3, clients perform the Personalized local update
operation to train their local models. Each life-logger then
sends their trained local model to the server, where a sim-
ilarity matrix is created using Algorithm 2. Spectral clus-
tering is then performed to identify clusters. After cluster
assignments are made, a cluster update is performed, and a
new global model is created. This process continues until
the personalized models of all life-loggers converge.

A.2. Experimental setup

For each lifelogger, we split the data into train:val:test
in 6:3:1 ratios. This was carried out for all the lifeloggers.
During FL training iterations, only the train set from each
lifelogger is utilized. After training is over, the personalized
model for each individual lifelogger is employed to infer the
memorability of images in the lifelogger’s own test set im-
ages. The overall F1-score is calculated by considering the
inferred and ground-truth memorability on all the test set
images from all lifeloggers. Cross-cluster/Cross-user test-



Algorithm 4 FedMEM+MSC
1: Initialize: ω0

0 = ω0
1 = . . .= ω0

C = ω0, T , L
2: for t← 0 to T do
3: M← Select clients(N )
4: Server sends the ω t

c or ω t to the selected lifeloggers ▷ ω t to the new
lifelogger

5: for M lifeloggers in parallel do
6: if Lgi /∈C then ▷ Lifelogger not assigned to any cluster
7: θi = Personalized Local Update(ω t )
8: else ▷ Lifelogger assigned to any of the k clusters. c ∈ C
9: θi = Personalized Local Update(ω t

c)
10: end if
11: end for
12: All lifeloggers send θ t

i to the server.
13: C←MSC(θ t

1,θ
t
2, . . . ,θ

t
M) ▷ Call Algorithm 2

14: for Lgi ∈M do in all C clusters perform the cluster update
15: ω t

c← ω t
c + riθ

t
i ▷ Equation (8)

16: end for
17: for all c ∈C in parallel do ▷ Only for MSC
18: ω t = ω t + rcω t

c ▷ Equation (10)
19: end for
20: end for
21: procedure PERSONALIZED LOCAL UPDATE(ω̄)
22: for l ← 0 to L do
23: θ

t,l+1
i = θ

t,l
i −αi∇ fi(θ

t,l
i )−αiη(θ t,l

i −ω t
c). ▷ Equation (6)

24: end for
25: end procedure

ing was not carried out as our personalized approach pro-
duced individual models for every lifelogger.

We utilized the same frozen ResNet50 as the baseline
CEMNET [40]. Because we want to demonstrate the advan-
tage of our personalized federated learning approach over
the centralized CEMNET model.

A.3. Distribution of lifeloggers data

In this supplementary copy we provide the data distri-
butions of some more lifeloggers Lg23 (Figure 10a), Lg28
(Figure 10b) to Lg34 (Figure 10h). We observed the data
distribution across lifeloggers, and we noted that some lifel-
oggers do not have any data for certain memory scores (such
as, for Lg31, none of their images had memory scores of 5
and 6). This showed us that the memorability scores pro-
vided by the lifeloggers do not follow the same distribution.
Therefore, we believe that there is case of non-IID (not in-
dependent and identical) distribution of data across lifelog-
gers.

A.4. Qualitative analysis of lifelogger’s personalized
models and global model (FedAvg)

We also provide a confusion matrix-based analysis for
each qualitative analysis of lifeloggers in Figure 11 . The
color intensity represents the classifier’s predictions. Darker
colors usually indicate higher numbers. This means that
areas in the matrix where the model made more predic-
tions (correct or incorrect) will be highlighted with a darker
shade. Lighter colors typically represent lower numbers.
These areas indicate fewer predictions for those class com-
binations. The y-axis (rows) represents the actual classes,
and the x-axis (columns) represents the predicted classes.
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Figure 10. Difference in histograms of memory score distribution
in individual lifeloggers (Lg)

We observed from the Figure 11 that the personalized model
produces more true positive predictions, whereas the global
model makes more false positive predictions. This further
supports our claim that the personalized model is more ef-
fective than the global model for all the lifeloggers.

A.5. Ablation of the value of λ1 and λ2

We trained both FedMEM+MSC and MSDC with 5 clus-
ters. We defined hyperparameters λ1 and λ2 in the range
[0,1], ensuring λ1+λ2≤ 1. These parameters regularize the
similarity measure. Setting both to 0 focuses on client sim-
ilarity. Increasing λ1 emphasized the global model while
increasing λ2 emphasized the clustered model. For equal
consideration of both cluster and global models, λ1 and λ2
are set equally. In the experiments in the submitted paper
we prioritized client similarity and set λ1 and λ2 to 0.25.
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Figure 11. Personalized model (FedMEM) compared to global model (FedAvg [30]) for selected lifeloggers (Lg). Global model favors
higher memorability scores but FedMEM is able to capture the characteristics of each lifelogger’s memorability score distribution resulting
in improved F1 score.

In Figure 12, we performed a comparative analysis of λ1
and λ2 to examine the impact of global and cluster models
on clustering, which is reflected in the effectiveness of Fed-
MEM. The model was trained for 30 global rounds, with
50% of the lifeloggers participating in each round. We
found that increasing the value of λ1 improves the perfor-
mance of FedMEM. Furthermore, when λ1 and λ2 are in
the range of (0.25,0.75), the performance of FedMEM re-
mains relatively consistent.

A.6. Ablation on the effect of clusters on Fed-
MEM+MSC

In Figure 13, we performed the experiment across 40
life loggers, but 50% of them were available at each global
round. We train for 30 global rounds. The values of the
hyperparameters λ1 and λ2 are 0.25. We observed if we in-

crease the number of clusters, the performance of FedMEM
decreases. But the decrease is not significant.

A.7. Performance analysis with the state-of-the-art

In Table 3, we present a comparative analysis of the per-
formance of FedMEM with different state-of-the-art Fed-
erated Learning algorithms. In the main article, we had
given only one performance metric, which is the F1-score.
Therefore, in this supplementary, we provide additional
metrics here for comparison such as the Precision, Recall,
weighted-F1 score, and the Mean Absolute Error (MAE).
Since the memory score is an ordinal number, we obtain
the absolute value of the error between the predicted and
ground-truth memorability scores. Then we calculate the
average value of this absolute error during inference time
over the images in the testset, which is presented as MAE.



Figure 12. Ablation on value of λ1 and λ2

Figure 13. Ablation on the number of clusters

From Table 3 we observed FedMEM+MSC performance is
better than the other FL algorithms.

A.8. Complexity analysis

FedMEM algorithm has three parts: local update, cluster
formation, and global update.

MSDC: When we are using MSDC, the cluster forma-
tion is pre-defined before the start of any global update. We
used agglomeration clustering to cluster clients. Agglomer-
ative hierarchical clustering starts with each lifelogger as its
own cluster and iteratively merges the closest clusters until
all points are in a single cluster or until a desired number of
clusters is reached. The agglomerative clustering algorithm
can be broken down into three main parts:

1. Initial pairwise distance calculations At the start, the
algorithm calculates pairwise distances between all N lifel-
ogger’s memory score to create a distance matrix. The num-
ber of unique pairs of points is(

N
2

)
=

N(N−1)
2

,

Calculating the distance for each pair takes constant time.
Time Complexity for the initial pairwise distance calcula-
tions is O(N2)

2. Finding the closest clusters to merge In each itera-
tion, the algorithm identifies the two closest clusters based
on the computed distance matrix. For this, it scans the en-
tire distance matrix, which contains O(N2) elements in the
first iteration. After the first merge, the number of clusters
decreases by one, and so on, until only one cluster remains.
There are N−1 iterations, one for each merge step. Search-
ing for the closest pair at each step requires scanning the
distance matrix, which takes O(N2) time. Therefore, for
N−1 steps, finding the closest clusters will take:

O(N2)+O((N−1)2)+O((N−2)2)+ · · ·+O(12)

This results in an overall complexity of O(N3).

3. Updating the distance matrix After merging two
clusters, the algorithm updates the distance matrix to re-
flect the distances between the newly formed cluster and
all other clusters. This involves recalculating the distances
for the new cluster, which takes O(N) operations.

There are N − 1 merge steps, so updating the distance
matrix requires:

O(N)+O(N−1)+ · · ·+O(1) = O(N2)

Total time complexity of MSDC The total complexity
of basic agglomerative clustering is the sum of the com-
plexities from the three components is O(N2), O(N3), and
O(N2). Therefore, the overall time complexity of agglom-
erative clustering is dominated by the complexity of finding
the closest clusters in each step, which results in O(n3).

MSC: When we are using MSC, cluster formation hap-
pens after every global iteration.

1. Similarity-matrix computation: After N lifelog-
gersperforms personalized local updates, they compute the
similarity matrix using Equation (1) and apply spectral clus-
tering to form clusters. Computing the pairwise distances
between N lifeloggers requires O(N2) operations, as it in-
volves calculating

(N
2

)
distances. Therefore, the complexity

of constructing the similarity matrix is, O(N2).



Table 3. Comparison of FedMEM with different FL algorithms

Method Precision Recall F1-Score (weighted) Mean Absolute Error
Non

Federated
Centralized Model [40] (Image-only baseline) 17.10 17.90 - 3.03

Siloed models per lifelogger 21.10 29.9 24.74 2.30

Federated

Non
Clustered

Non
Personalized

FedAvg [30] 12.27 16.49 14.07 3.69
FedProx [25] 12.22 16.31 13.97 3.78

Personalized pFedMe [38] 15.60 19.80 17.45 3.39

Clustered

Apriori Non
Personalized

h-SGD [26] 07.00 20.39 10.42 3.96
Dynamic FeSEM [27] 03.37 11.46 05.21 4.06
Dynamic

Personalized
DemLearn [32] 21.54 28.86 24.67 2.59

Apriori FedMEM+ MSDC
[Ours] 21.30 28.69 24.45 2.68

Dynamic FedMEM+ MSC
[Ours] 19.86 34.47 25.20 2.28

2. Constructing the Laplacian Matrix: Once the simi-
larity matrix is done, the graph Laplacian L is computed.
L = D−W , where D is the degree matrix and W is the sim-
ilarity matrix. The time complexity to calculate the degree
matrix D is simply the row sums of W , so constructing L
takes O(N2) time, since we are just performing element-
wise operations on the similarity matrix W . Overall Com-
plexity for this Step is O(N2).

3. Eigenvalue Decomposition Spectral clustering re-
quires computing the first C eigenvectors of the Laplacian
matrix, where C is the number of clusters. For a dense
N×N matrix where all lifeloggers are participating, the cost
of eigenvalue decomposition is O(N3) in the worst case.
eigenvalue decomposition can be reduced up to O(C ·N2),
if we used iterative methods such as Lanczos algorithm [22]

4. Clustering in the Reduced Space After computing
the top C eigenvectors, spectral clustering applies a stan-
dard clustering algorithm such as k-means to the eigenvec-
tor matrix U ∈ RN×C, which reduces the original data to a
lower-dimensional space. Running k-means on N lifelog-
gers in C-dimensional space takes O(N ·C · t), where t is
the number of iterations until convergence. In practice, t
is small, so this step is relatively efficient compared to the
eigenvalue decomposition step. Overall Complexity for this
Step is O(N ·C · t)

Total time Complexity of MSC The time complexity
of spectral clustering is the sum of the complexities of
the above steps: O(N2), O(N2), O(C ·N2) or O(N3) and
O(N ·C · t). The dominant term is the eigenvalue decompo-
sition, making the overall complexity O(N3) or O(C ·N2)
with iterative methods.

Comparison of the time complexity of FedMEM cluster
formation with state-of-the-art In the worst case, both
MSC and MSDC of FedMEM have time complexity O(N3).
If we can optimize the clustering in MSC by using [22] that

reduces time complexity up to O(C ·N2). [32] uses a hier-
archical method which produces the overall complexity of
O(N3). Cluster assignment in FeSEM [27] has time com-
plexity of O(N ·C · p) where p is the number of parameters
in the model.
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