A. Methods details

As GRAPPA is frequently used in current MR scanners,
it is necessary to include it in the comparison. We perform
grid search of GRAPPA parameters that yield the highest
possible SSIM and PSNR, namely kernel size 7 x 7 and the
parameter for the kernel calibration v = 0.01. For the U-
Net, the pre-trained weights provided by [23] are used. The
weights are trained on the single-coil fastMRI knee data.
The same weights are applied to out-of-distribution experi-
ments, as described below. For GRAPPA and the fastMRI
U-Net, which reconstruct the image slice by slice, we gen-
erate a 3D image by stacking the slices to a 3D volume.

We evaluate the consistency of each method for sev-
eral under-sampling operators according to specific distri-
butions, namely Uniformly random distribution with accel-
eration factor 2x and 15% center fraction and Gaussian ran-
dom distribution with acceleration factor 8 x and 8% center
fraction, respectively [13,52]. In order to evaluate the out-
of-distribution reconstruction, we use the model that was
trained on fastMRI data without any fine-tuning. The model
weights provided by DiffusionMBIR [&] are taken for a fair
comparison. For fastMRI knee data.

B. Hyper-parameters selection

We perform a grid search to find a good configuration
for the hyper-parameters of the Fourier slice optimization,
m, 1 and a. Figure 5 shows the grid search results, where
the optimal configuration is found as iteration m = 10, reg-
ularization parameters for sparsity o = 0.02, learning rate
n = 0.01, and including total variation. We this configura-
tion in all empirical evaluations, unless differently specified.
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Figure 5. Hyperparameters search for uniform mask (left) and
Gaussian mask (right), where the maximum is given in the config-
uration at index = 23 with combination parameters: (m = 10, o« =
0.02,n7 = 0.01,tv=1)

C. Ablation Gaussian

Our results are consistent with the Uniform case, where
regularization is required to improve the SSIM. This con-
firms that both regularization terms are contributing to im-
prove the given optimization pipeline.
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Figure 6. Ablation study to investigate the effect of regularization
for reconstruction in terms of SSIM (71) metric for Gaussian mask.
The optimization iteration m = 10 and = 0.01.

D. 3D MR images and their projection

We follow the definition and presentation of the Fourier
slice method as given in [6, 7]. Suppose we have 2D func-
tion p(z, y), the projection can be written as

p(x) = /jo p(z,y)dy

Now observe the 2D Fourier transform p(k,,k,) =
Fap (p(z,9))

k) = [ [ plage etk daay

Focusing on the slice at the center frequency at y—axis, i.e.,
ky = 0, we have

Blka0) = / / p(z, y)dy 27k da

— [ bl = Fup (o)

This is a 1D Fourier transform on the projection. Addition-
ally, the projection in the discrete setting is the summation
on the one axis.

E. Optimization problem details

The algorithm | performs an alternating update between
the DDPM sampling and the Fourier slice optimization in
(5). In this section, we will discuss the implementation de-
tails to solve the optimization in (5). The sparsity constraint
by using ¢;-norm is non-smooth. The implementation of



the regularization function in the optimization problem can
be represented as the proximal operator [32], namely the
soft thresholding operator. Soft thresholding operator can
be written as [16, eq. 15.22].
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prox, (X) = { @)
where « is the pre-determined threshold value. It should
be noted that the absolute value is applied element-wise for
volumetric data. The combination of the proximal opera-
tor and the Lagrangian function is called proximal gradient

method [5, 32] described as follows
S 2
inimi Y.-M X, H R (X
minimize [Z_EH o (Fap (X4)) F]+ (X)

subjectto  [y% = m*v o Fip (P, (X,))| fors € [S]
e = mF= o Fip (P, (X,))

®)

where the regularization R (X) can be written as
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To summarize, the entire optimization problem can be for-
mulated in (10) and (11). The proximal projection in (10)
deals with the ¢; — norm, which encourages the sparsity of
the reconstructed image. The first term on the right-hand-
side of (11) ensures data fidelity on zy—plane, while the
second and third terms enhance the continuity on z—axis.
The last term in (11) incorporates smoothness of MR im-
ages.
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where the function L (X) can be written as
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In general the function G (X) in (5) can be written as in
(10). In Appendix B, we will discuss the choosing of hy-
perparameter, such as learning rate )\, proximal parameters

«, and the optimization iteration m, as well as the effect on
the regularization function.

F. Qualitative results

In Figure 7 the maximum intensity projections on each
axis are displayed to visualize the fine roots structure. In
addition, we report the average SSIM and PSNR for each
view (axial, coronal, sagittal). It is evident that the fastMRI
U-Net struggles to reconstruct the image in areas with lim-
ited information, regardless of Uniform or Gaussian mask-
ing in the column direction. Besides achieving the highest
SSIM and PSNR, the proposed method generates a high-
contrast image with minimal pixel-wise differences com-
pared to other methods, as depicted in the bottom-left sub-
plots.

Figure 8 illustrates the reconstruction of BRATS data
for each view, accompanied by SSIM and PSNR values for
each slice. The figure highlights that DiffusionMBIR yields
smaller deviations in error differences with the ground truth,
as depicted in the lower left corner box. However, it also
introduces higher background noise compared to the pro-
posed method. Notably, in the zoomed area with Gaussian
masking, the proposed method effectively generates finer
details while adhering closely to the ground truth in com-
parison to its counterparts.
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Figure 7. Reconstructions for Lotus (top) and Vicia (bottom) plant roots data. We present vertically the axial, coronal, and sagittal
maximum intensity projections. The numbers on the upper right of each image represent the mean PSNR/SSIM of slices along dimensions.
The subplots on the lower left are the difference map of the projection w.r.t. the ground truth. The color range is between —0.1 (bluish)
and 0.1 (reddish).
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Figure 8. Slices from the volume reconstructions for BRATS data from Brats1§_CBICA_APM_1 (top) and Brats18§_CBICA_AAM_1
(bottom). We present vertically the axial, sagittal, and coronal middle slices. The numbers on the upper right of each image represent the
PSNR/SSIM of middle slices. The subplots on the lower left are the difference map of the projection w.r.t. the ground truth. The color
range is between —0.02 (bluish) and 0.02 (reddish).
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