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A. Prompts for Query-Text Alignment
To generate text prompts for each action category,

we send a request to GPT [9] by using the template:
“For the action type {CLS}, what are the
visual descriptions? Please respond
with a list of 16 short sentences.” where
the placeholder “{CLS}” is replaced by the action class
name from the vocabulary. Thus, we obtained multiple
caption-like sentence descriptions of the action. Eventually,
the text feature for each class is computed by mean pooling
of features from the VLM text encoder given the text
prompts. In Fig. 1 and Fig. 2, we show a few pieces of
the prompt examples on the J-HMDB and UCF101-24
datasets, respectively. We will release all the prompts we
used in this work.

B. Explanation of the Reversed Attention
As discussed in the main paper, the seemly counterin-

tuitive phenomenon of the reversed visual-text attention has
been studied in [4,5] and we also observed this in our video-
based experiments. For CLIP-based models, [CLS] token
in ViT is aligned to the text semantics so that its attention
weight corresponds to the foreground, while the rest L vi-
sual token weights are complementary after softmax over
L + 1 tokens before attention pooling. Therefore, due to
the attention pooling, high similarity between text feature
(or visual [CLS] token feature) and L visual tokens could
indicate the background.

C. Implementation Details
Positional Embedding Interpolation. When using the

pre-trained VLM without fine-tuning, an immediate chal-
lenge is that the input videos have different spatiotemporal
resolutions from the data in VLM pre-training. For exam-
ple, the CLIP-ViP is pre-trained on input videos with size

12 × 224 × 224 while videos from J-HMDB can be in any
resolution after random augmentations in training. A simple
solution is to resize the input video size to match with the
pre-trained ones. But for the action detection subtask, per-
son localization is sensitive to the input resolution. To han-
dle this challenge, we instead keep the raw resolution as in-
put, but interpolate the pre-trained spatial and temporal po-
sitional embeddings. For example, given the CLIP-ViP B16
VLM and an input video with size T ×H×W , we interpo-
late the 12 temporal positional embeddings PEt ∈ R12×D

to P̂Et ∈ RT×D, and interpolate the 196 (= 224
16 × 224

16 ) spa-
tial positional embeddings PEs ∈ R196×D to P̂Es ∈ RL×D

where L = H
16 × W

16 . This technique is found useful for the
action detection problem.

4D Feature Pyramid. Following the line of detection liter-
ature [3, 13], the pre-trained patch token features are trans-
formed into a 4D feature pyramid before the detection head.
Let the H ∈ Rh×w×T×D be the pre-trained patch token
features from the VLM video encoder, where h × w is the
number of patches for each frame, T is the number of video
frames, and D is the Transformer dimension. We use de-
convolution or convolution to produce hierarchical feature
maps H̃(l) by spatial strides s(l) ∈ {1/4, 1/2, 1, 2} where
the fractional strides are deconvolutional stides and l in-
dexes the pyramid level. Different from [3, 13] that fully
fine-tunes the visual encoder, our VLM visual encoder has
to be frozen. Therefore, to allow pre-trained features bet-
ter utilized by OpenMixer head, we propose to add residual
connection at each level of the 4D feature pyramid by spa-
tial interpolation: Ĥ(l) = ϕ(H, s(l)) + H̃(l). The function
ϕ is to spatially interpolate the feature map from the size
h× w to the same resolution of H̃(l).
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Table 1. Effect of VLMs. We implement the OpenMixer by CLIP-
ViP and CLIP with the same ViT-B/16 transformer.

VLMs Modality Mean Base Novel

CLIP [10] image 71.60 79.46 64.44
CLIP-ViP [15] video 86.34 90.75 82.33

Table 2. GPT help temporal localization. We compute mAP by
only using temporal IoU on J-HMDB dataset.

Mean(t) Base(t) Novel(t)

w/o. GPT 83.57 90.74 77.06
w. GPT 91.62 93.63 89.79

Table 3. Impact of person detectors. For E2E setting, pre-
dicted boxes from OpenMixer are replaced with boxes from Mask
RCNN [1] or G-DINO [7], and their classification scores are as-
signed by maximum IoU with OpenMixer boxes that have scores.

models person boxes J-HMDB UCF101-24
Mean Base Novel Mean Base Novel

ZSR+ZSL MaskRCNN [1] 66.73 64.61 68.66 35.01 34.59 35.43
G-DINO [7] 69.72 67.09 72.12 45.43 44.82 46.04

E2E Mask RCNN [1] 83.51 87.45 79.92 42.31 48.48 36.13
G-DINO [7] 85.06 87.76 82.60 46.56 47.00 46.11

D. Additional Results

Impact of VLMs. We note there is a line of literature [2,
6, 8, 11, 12] built on image CLIP for open-vocabulary video
understanding. Therefore, it is interesting to see whether
image CLIP also works for the OVAD task. In Tab. 1,
we compare OpenMixer with its variants using video-based
CLIP-ViP [15] and image-based CLIP [10] under the same
ViT-B/16 architecture. The results show that the OpenMixer
with CLIP performs way worse than the model with CLIP-
ViP, because of the limited capacity of image CLIP in cap-
turing video actions.

Can GPT help temporal action localization? This ques-
tion is interesting as how textual prompts from language
models like GPT could help temporal localization has not
been explored in literature. In Tab. 2, we show that by eval-
uating the temporal action localization performance, GPT
prompts could significantly help.

Impact of person detectors. In Tab. 3, we compare the
impact of using external person boxes from off-the-shelf
person detectors, i.e., G-DINO [7] and Mask RCNN [1],
in test time on the two best-performed models under the
ZSR+ZSL and E2E settings, respectively. It shows that the
high-quality boxes from G-DINO could consistently out-
perform those from Mask RCNN. With the same external

Table 4. Impact of the location priors noise. We analyze the per-
formance impact from the noise level aspect of the location prior
for initializing the box queries of the first S-OMB block.

priors from noise level Mean Base Novel

(a) G.T. (UB) clean 91.19 93.23 89.34
(b) detection moderate 83.92 88.19 80.03
(c) random (LB) serious 54.15 56.50 52.02

ours attention map slight 86.34 90.75 82.33

Table 5. Generalized zero-shot testing. A complete vocabulary
of base and novel categories is given in testing.

Models J-HMDB UCF101-24
Mean Base Novel Mean Base Novel

STMixer [13] 36.26 55.71 18.57 28.72 53.42 4.02
OpenMixer 74.28 77.72 71.16 40.07 54.00 26.14

test-time boxes, the results of OpenMixer model are consis-
tently better than those of the strongest ZSR+ZSL baseline
(Video+GPT). The relatively smaller gains on UCF101-24
than the gains on J-HMDB can be explained by the back-
ground bias in UCF videos that restricts VLMs in action
recognition.
Impact of location prior noise. In Table 4, we compare
ours with 3 variants that use location priors from (a) ground
truth (G.T.) boxes which can be regarded as clean without
noise and upper-bound (UB) the performance, (b) detected
person boxes that may be moderately noisy, and (c) uniform
random boxes that are completely noisy and lower-bounds
(LB) the performance. The results show our location priors,
which are sampled from the text-patch attention map, per-
form much better than the baselines (b)(c), and are close to
the upper-bound performance in (a).
Generalized zero shot testing. In our main paper, the base
and novel categories are individually given in testing. Thus,
in Table 5, we additionally present the results of the gen-
eralized zero-shot testing, in which a complete vocabulary
of base and novel categories is given for each testing video.
This is more challenging but our OpenMixer still keeps out-
performance than the STMixer baseline [13]. Moreover, ac-
cording to [16,17], the rankings of models are stable by the
two testing protocols, and only the scales of numbers are
different. Therefore, the efficacy of models can still be val-
idated by individual testing in our main paper.
Results on Different Splits. We experiment with five
random 50%-50% seen-unseen class splits on both the J-
HMDB and UCF101-24 datasets. Full results of video mAP
are summarized in Tab. 6 and 7. The split (0) is used in all
experiments of the main paper. We also experiment with
five random 75%-25% seen-unseen class splits on the two



Table 6. Results on 50%-50% J-HMDB splits.

Metrics (0) (1) (2) (3) (4) avg
Mean 86.34 86.29 85.50 86.73 83.40 85.65
Base 90.75 89.89 89.20 87.70 85.36 88.58
Novel 82.33 83.02 82.13 85.85 81.61 82.99

Table 7. Results on 50%-50% UCF101-24 splits.

Metrics (0) (1) (2) (3) (4) avg
Mean 46.42 46.28 45.45 47.32 48.30 46.75
Base 59.10 61.11 55.85 62.33 61.25 59.93
Novel 33.73 31.45 35.05 32.31 35.34 33.58

Table 8. Results on 75%-25% J-HMDB splits.

Metrics (0) (1) (2) (3) (4) avg
Mean 75.96 79.43 79.77 81.88 86.56 80.72
Base 74.73 75.21 78.34 82.14 85.46 79.17
Novel 79.03 89.98 83.34 81.23 89.30 84.57

Table 9. Results on 75%-25% UCF101-24 splits.

Metrics (0) (1) (2) (3) (4) avg
Mean 55.78 55.83 57.04 57.19 61.85 57.54
Base 64.85 61.83 60.16 58.74 61.82 61.48
Novel 28.55 37.80 47.69 52.55 61.96 45.71

datasets, and report results in Tab. 8 and 9. As some of hu-
man actions are much harder to detect than others and they
could be included into either base or novel categories, it is
normal that the overall performances on different splits vary
significantly. Following the existing literature, we will re-
lease all splits.

E. Visualizations
We present more visualizations on the J-HMDB dataset

and UCF101-24 in Fig. 3 and 4, respectively. They show
that our method could detect human actions with pre-
cise bounding boxes for both seen and unseen actions.
Specifically, in scenarios where multiple persons exist, for
the examples of the seen action Volleyball Spiking
and the unseen action Ice Dancing on the UCF101-24
dataset, our method could still localize the action-relevant
persons on most frames. Referring to single-person action
detection, there is still room to improve the performance of
multi-person action detection in the future.

F. Comparison with Concurrent Work [14]
The prior work [14] defines the same task setting and

identifies similar challenges as ours. However, there are
several important differences in terms of technical moti-
vations and design. First, for the roadmap, [14] focuses
on large-scale video region-text pre-training followed by
downstream fine-tuning, while we emphasize the model
adaptation to small downstream datasets in one-time train-
ing. Second, for model design, [14] is a two-stage method
with region proposal generation and action detection refine-
ment, while we adopt DETR-like end-to-end design. As for
empirical comparison, currently, this is not feasible because
(1) the [14] is a concurrent work as ours without releasing
any code, data, and models (during the submission period),
and (2) it is not an apple-to-apple comparison since the data
splits and evaluation metrics of the benchmarks in [14] are
different from ours as indicated in the paper [14].

G. Limitations and Future Work.
The recent large-scale action detection dataset AVA [?]

is not included in this paper, as we emphasize the adap-
tation of existing pre-trained VLMs for downstream small
datasets. In the future, similar to the concurrent work [?],
we will explore how to effectively pre-train on AVA to ben-
efit for a more general audience.
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{
"brush_hair": "Brush Hair: A person is brushing their hair using hand movements with a hairbrush or their fingers.",
"catch": "Catch: Someone is catching an object, such as a ball or a frisbee, with their hands.",
"clap": "Clap: A person is bringing their hands together to create a clapping sound.",
"climb_stairs": "Climb Stairs: Someone is ascending or descending a set of stairs, using alternating leg movements.",
"golf": "Golf: A person is swinging a golf club to hit a golf ball.",
"jump": "Jump: Someone is propelling themselves off the ground using both feet simultaneously.",
"kick_ball": "Kick Ball: A person is striking a ball with their foot.",
"pick": "Pick: Someone is picking up an object from the ground, usually using their hands.",
"pour": "Pour: A person is pouring liquid from one container to another.",
"pullup": "Pull Up: Someone is lifting their body upwards using their arms, typically performed on a horizontal bar.",
"push": "Push: A person is exerting force on an object away from their body, using their hands or body.",
"run": "Run: Someone is moving quickly on their feet, usually in a straight line.",
"shoot_ball": "Shoot Ball: A person is shooting a ball towards a target or a goal using their hands or feet.",
"shoot_bow": "Shoot Bow: Someone is using a bow to shoot an arrow.",
"shoot_gun": "Shoot Gun: A person is firing a gun, typically aimed at a target.",
"sit": "Sit: Someone is in a seated position with their weight supported by a surface, such as a chair.",
"stand": "Stand: A person is upright on their feet, with their body fully supported by their legs.",
"swing_baseball": "Swing Baseball Bat: Someone is swinging a baseball bat to hit a ball.",
"throw": "Throw: A person is propelling an object through the air using their hand or arm.",
"walk": "Walk: Someone is moving on their feet with a regular, steady pace, but slower than running.",
"wave": "Wave: A person is moving their hand or arm back and forth in a greeting or farewell gesture, usually with an

open palm."
}

Figure 1. Generated prompts for J-HMDB action categories. For each category, we generate one prompt sentence.

{"Basketball": [
"Basketball: A player dribbles the ball swiftly down the court amidst cheers from the crowd.",
"Basketball: An athlete performs a high jump and slam dunks the ball into the net with confidence.",
"Basketball: Teammates pass the ball around the court, strategizing their next move.",
"Basketball: A player precision shoots the ball from the three-point line and scores.",
"Basketball: A tense one-on-one standoff as a player attempts to steal the ball.",
"Basketball: Players execute deft maneuvers around opponents on the court.",
"Basketball: A player displays impressive footwork while maintaining control of the ball.",
"Basketball: Following a whistle blow, a player steps up to take a free throw.",
"Basketball: The coach calls a timeout to relay new strategies to the team.",
"Basketball: A swift breakaway leads to a stunning layup and two points on the board.",
"Basketball: Thorny defense put up by players trying to prevent the opposing team from scoring.",
"Basketball: The player manages to steal the ball, intercepting a pass and turning the game around.",
"Basketball: In the sound of the last buzzer, players celebrate a well-earned victory.",
"Basketball: Spectators erupt in cheers as the ball swishes through the net.",
"Basketball: A captivating display of agility and teamwork witnessed on the court.",
"Basketball: A player makes a long, arching shot from the half-court line, electrifying the crowd."

],
.
.
.
"TrampolineJumping": [

"Trampoline Jumping: A joyful child is leaping high on a trampoline in their backyard.",
"Trampoline Jumping: A gymnast is skillfully performing somersaults on a trampoline.",
"Trampoline Jumping: A group of friends are competing in tricks while bouncing on a trampoline.",
"Trampoline Jumping: A professional athlete is executing a perfect backflip on a trampoline. ",
"Trampoline Jumping: Enthralled family members are enjoying a trampoline jump session on a sunny day.",
"Trampoline Jumping: Excited children are bouncing and laughing on a trampoline at a birthday party.",
"Trampoline Jumping: A fitness enthusiast is getting an intense workout by jumping on a trampoline.",
"Trampoline Jumping: An acrobat rehearses complicated maneuvers on a large trampoline. ",
"Trampoline Jumping: A fearless teenager is executing high jumps on a trampoline in a skate park.",
"Trampoline Jumping: An adventurous person is defying gravity with bounces on a massive trampoline.",
"Trampoline Jumping: A young girl confidently performs flips and twists on a trampoline. ",
"Trampoline Jumping: A trampoline athlete practices precise landings in a professional gym.",
"Trampoline Jumping: An aspiring gymnast is perfecting their routine on a trampoline.",
"Trampoline Jumping: A boy exhilaratingly jumps towards the sky on a trampoline, his laughter filling the air.",
"Trampoline Jumping: A daring young woman is doing mid-air splits on a trampoline in an indoor park.",
"Trampoline Jumping: A man is reaching extreme heights, all while being propelled off a trampoline."

]}

Figure 2. Generated prompts for UCF101-24 action categories. For each category, we generate 16 prompt sentences.
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Figure 3. Visualization on J-HMDB dataset. We visualize our OpenMixer detections (in blue boxes) and ground truth (in yellow boxes)
on five base classes (in black font) and five novel classes (in red font). Class names are shortened for brevity. The numbers after class
names are confidence scores.
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Figure 4. Visualization on UCF101-24 dataset. We visualize our OpenMixer detections (in blue boxes) and ground truth (in yellow
boxes) on five base classes (in black font) and five novel classes (in red font). Class names are shortened for brevity. The numbers after
class names are confidence scores.


