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1 Data details

1.1 Synthetic data generation

Each synthetic sample is comprised of a 5-keypoint pose sequence of 9 timesteps. The movement of
each keypoint is determined by a sinus with some amplitude A and frequency f, each is drawn from a
separate multivariate Gaussian distribution with mean Â and mean f̂ respectively. The behaviors differ
in that for the common behavior f̂ > Â and for the rare behavior Â > f̂ (see main text Figure 4). For
the Y coordinate, to keep the motion relatively simple, we set Â to be a small perturbation, varying
the movement mostly in the X coordinate of each vertice. This qualitatively made samples appear more
similar to the movement in the biological fish datasets we used (see main text Figure 3).

The amplitudes and frequencies of keypoints on the same sample are weakly correlated (covariance

= 0.3). For the train set we set Â1 = 0.6 and f̂1 = 6 for the common behavior and Â2 = 6 and f̂2 = 0.6

for the rare behavior. For the test set we set Â1 = 0.3 and f̂1 = 3 for the common behavior and Â2 = 3
and f̂2 = 0.3 for the rare behavior. We changed the means of the parameters to test whether the model
learned the kinematic rule.

We created a separate dataset for each behavior similarity level. We also tested the effect of the
baseline rarity level in the dataset on pipeline performance. To do that, we generated datasets with
different initial rarity levels - (%rarity = 1.5%, 5%, 12%, 24% of the dataset). We created a total of
16 datasets (4 behavior similarities X 4 rarity levels). The number of samples in each dataset varied
slightly due to the rarity modulation. All dataset sizes are summarised in Table S1. The code to generate
the data is provided in our codebase, and the exact datasets used are provided in the following data
repository: 10.5281/zenodo.14266407.

train test

data type name normal abnormal total normal abnormal total

synthetic 5% rarity 30000 1500 31500 10000 525 10525
1.5% rarity 30000 450 30450 10342 158 10500
12% rarity 30000 3600 33600 9240 1260 10500
24% rarity 30000 7200 37200 7980 2520 10500

biological FishLarvae1 111985 15412 127397 22546 3545 26091
PoseR 25780 1156 26936 4557 202 4759
Meerkat 58477 3435 61912 11667 716 12383

Table S1: Number of samples for each dataset. Number of normal, abnormal, and total samples for the
train and test sets of each dataset. For the synthetic datasets, sample sizes were the same for different
similarity levels within the same rarity level.

https://github.com/shir3bar/SiftingTheHaystack
https://doi.org/10.5281/zenodo.14266407
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1.2 Biological datasets - details on datasets and splits

1.2.1 FishLarvae1

Johnson et al. [5] documented larval Zebrafish (Danio rerio) chasing prey in a large arena in the
laboratory. Videos were shot by tracking the fish across an arena with an overhead camera at 60 frames
per second (FPS). Videos were subsequently pose-estimated and then segmented into clips according to
the behaviors and thus have varying durations. The pose sequence clips were made publicly available.
Behavioral labels were assigned using unsupervised behavioral clustering and divided by researchers into
5 main behavioral categories - explore, pursuit, j-turn, abort, and strike.

The behavior clips were segmented by the annotator such that the first frame is the start of the
behavior and the last frame is the end. Such that the behavior instances had varying numbers of
timesteps (or frames). This is unlike the two other datasets which have a set duration for all samples.
The original dataset included several frames preceding or succeeding the behavior, but we ignored these
as they had no behavior annotations.

We note that larval fish striking behavior is very fast (∼ 40 milliseconds), and the framerate this
dataset was acquired in is thus sub-optimal to document the behavior. For comparison, the PoseR
dataset (below) was acquired at 300 FPS. Indeed, when we reviewed examples from the dataset, the
characteristic s-shaped posture preceding a strike appeared only in a single frame. This makes the
distinction between behaviors particularly challenging.

Data splitting The data had been acquired in several long filming sessions (trials) and repeatedly
from roughly 100 different individual fish. Individual trials may be on different days. Each behavior
sequence, i.e., an annotated pose sequence, has an associated trial ID and individual ID. We split the
data into test and train such that clips from the same filming trial are all in the same partition (either
test or train) however we didn’t consider individual identity as each individual had multiple trials. We
provide code for data preparation in our codebase which includes the data splits we used.

1.2.2 PoseR dataset

Mullen et al. [7] present another larval Zebrafish behavioral dataset. The data is compiled from several
separate neurobiological experimental assays. Unlike the previous dataset, here the motion of the larvae
is restricted to a small 25mm x 25mm x 25mm aquarium. Videos were acquired at 300 FPS and then
pose-estimated; these pose sequences were made publicly available. Each behavior sequence was 1 second,
i.e., 300 frames. Behavioral labels were assigned using unsupervised behavioral clustering and divided
into - burst swim, routine turn, j-turn, scoot, long-latency C-bends, slow-latency C-bends, O-bends, and
noise.

Data splitting and cleaning Even though the dataset had a dedicated ”noise” category, we found
that in many cases skeleton vertices would flicker and be estimated far from the rest of the skeleton.
At the same time, we found that our anomaly detector is particularly good at finding these samples
and assigning them a high anomaly score. While potentially useful, this was not what we attempted to
do in this study. So we filtered the PoseR dataset by dropping frames that had landmarks that were
above a threshold distance from the rest of the fish. Since the dataset was acquired at a high frame rate,
dropping a single frame did not affect the smoothness of the movement. However, we took a conservative
approach, and if a clip had more than 50 frames non-consecutive dropped, or more than 20 consecutive
frames dropped we completely removed the clip from the data. In total, we removed 1976 clips from the
train data and 344 from the test data using this method.

As for data splitting into train and test, we used the same splits used in the original paper [7]. The
cleaning code with the data preparation code is available in our code repository.

1.2.3 Meerkat

We used an accelerometry dataset acquired by Chakravarty et al. [3] to show the generality of the
framework to other data modalities and species. This is a dataset of Meerkat behavior assembled by
fitting the animals with collars mounted with tri-axial accelerometers while simultaneously monitoring
them with video. Acceleration data was acquired at 100 Hz/axis and split into two-second clips resulting
in 200 ”frames” with 3 data points per frame for each sequence. The behavioral labels were determined
from the videos and divided into four behaviors - foraging, vigilance, resting, and running.

https://github.com/shir3bar/SiftingTheHaystack/tree/main/data_prep
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Data splitting and preparation As described in the main text, to make the data compatible with
the anomaly detection framework we used we had to make each vertice have two channels. We thus
took the planar accelerations along (xy, xz, yz). Data preparation code is provided in our codebase.
Each behavior segment was associated with the ID of the filmed individual. A total of 10 meerkats
were filmed in 11 filming sessions. Though we initially tried to separate individuals, the task proved
challenging as it significantly changed the distribution of behaviors in the dataset. Thus we split the
dataset randomly into test and train. Given that our goal in the end is to find rare behaviors within a
single dataset efficiently, we feel this does not hurt our evaluation. The splits we used are provided in
the data preparation code.

2 Statistical analysis methods and results

2.1 Statistical modeling of rarity experiments

To understand the effects of induced rarity level and labeling effort on our method, and robustly compare
it to random sampling, we modeled the rarity experiments for each dataset using linear models in R.
The code statistical analysis is available in our codebase. The files containing the raw outputs of the
experiments are provided in the following data repository: 10.5281/zenodo.14253658

Below we provide a short paragraph describing the main findings of this analysis. When reading
the outputs of such models we look at the coefficients each variable is assigned to assess its effect on
performance, and at the p-value (p) to assess whether this effect is statistically significant.

Synthetic data We modeled the AuPRC as a function of sampling method (ours or random), rarity
level (log-transformed), and labeling effort, including a three-way interaction between these parameters.
This interaction term essentially means that different trends may appear in the data with different
combinations of these parameters.

We considered each of the 4 behavior SDs separately and created a separate model for each. The
results show that both methods are affected by behavior rarity but in different ways. While our method
has a weak negative correlation with the frequency of the rare behavior (i.e., performance increases when
behavior is rarer, coefficients between -0.18 - 0.03), random sampling performance is positively correlated
and with a stronger effect (coefficients between 0.25-0.119). The results show that our method provides
more stable performance across the range of rarities and similarity levels.

In Figures 4 and 5 in the main text, we use the statistical models of each dataset to plot the estimated
performance given a set labeling budget of 200 samples at different rarity levels. This is done using the
’visreg’ package in R [2]. For Table 1 in the main text, we similarly use the model of each dataset to
calculate the estimated mean performance across all rarity levels using the ’emmeans’ package in R [6].

behavior SD = 0.5 behavior SD = 1.5 behavior SD = 2.5 behavior SD = 5

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

labeling effort

m
ea

n 
A

uP
R

C

method proposed random

Figure S1: Effect of labeling effort on performance for the synthetic datasets. Performance (y-axis) as
a function of labeling effort (x-axis) at different behavior similarities (behavior SD, a-d) for our method
(red) and the traditional method (blue). Performance was measured in AuPRC and averaged across all
tested rarities, the ribbon represents the upper and lower confidence intervals (95% CI). Our method
was superior for all labeling efforts, and saturated at around 300 reviewed clips.

https://doi.org/10.5281/zenodo.14253658
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Figure S2: Effect of labeling effort on performance for the biological datasets. Performance (y-axis) as a
function of labeling effort (x-axis) for the different datasets (a-c) for our method (red) and the traditional
method (blue). Performance was measured in AuPRC and averaged across all tested rarities, the ribbon
represents the upper and lower confidence intervals (95% CI). Our method was superior for all labeling
efforts and saturated after 300 reviewed clips for the FishLarvae1 dataset and only 100 reviewed clips
for the PoseR and Meerkat datasets.

2.1.1 Effect of labeling effort

The labeling effort had a small but significant effect on performance for both methods (labeling effort
between 30-1000, coefficients for both methods between -0.0004 - 0.0012). In Figures Figure S1 and
Figure S2 we plot the actual (i.e., not estimated) mean AuPRCs as a function of labeling effort for the
synthetic and biological datasets, respectively. Both figures show similar trends, our method not only
yields better performance overall but also does so using a smaller labeling effort. This can be seen by
looking at when the curve starts to plateau.

2.2 Statistical analysis of ablation studies

2.2.1 Synthetic data

To statistically evaluate the effect of the behavioral similarity and the frequency of the rare behavior on
model performance given the fully labeled dataset (i.e., model benchmarking) we used a linear model.
We modeled standardized Area under the Precision-Recall Curve (AuPRC) as a function of behavioral
similarity and frequency and included their interaction and the architecture.

Standardized AuPRC The AuPRC expected under a random classifier is equal to the fraction of
the positive class in the data. Thus, this metric is sensitive to data imbalance and cannot be used to
directly compare performance between test sets with different data imbalances [8, 1]. To standardize the
AuPRC we calculate the difference between the AuPRC and the expected performance (which is equal
to the %rarity). Because this procedure alone will bias the metric against high behavioral frequencies
(with higher expected performance) we further divide the quantity by the maximum possible difference
between AuPRC and expected performance 2.2.1. This yields a metric that, like AuPRC, ranges from 0
for poor performance to 1 for perfect performance.

standardised AuPRC =
AuPRC −% rarity

1−% rarity
(1)

ST-GCN-based classifiers showed the best performance across the entire range of behavioral frequen-
cies and behavioral similarities (see Figure S3 and Table S2). Surprisingly, if the behavior of interest is
quite distinct (behavior SD = 0.5), even high rarity levels (translating into high data imbalance) only
mildly affect performance (-0.02 standardized AuPRC for the lowest overlap level). A linear model pre-
dicting the standardized AuPRC as a function of the baseline behavioral frequency (rarity), behavioral
similarity, and architecture found quite intuitive results. The unsupervised architecture was worse than
the supervised one (coefficient = -0.19, p < 5.8e− 13). The similarity between behaviors (behavior SD)
hurts performance (coefficient =-0.15, p < 0.0001). The baseline rarity by itself had no significant effect,
however, it positively interacts with behavior similarity (coefficient = 0.27, p < 0.0001) which means
that when a behavior is more frequent, behavior similarity has less effect on performance. The linear
model explained a substantial part of the variance in the data (R2 = 0.81).
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Figure S3: Example of architecture performance on synthetic data. Precision-Recall curves for the
5 % behavior rarity dataset for different behavioral overlaps (panels a-d). Colored numbers in each
pane correspond to the respective area under each of the curves. ST-GCN classifiers (orange) dominate
performance. Unsupervised Normalizing Flows (green) are competitive for lowest behavioral similarities
but their performance degrades more quickly.

Behavior Standard Deviation (more overlap →)

Method % Rare 0.5 1.5 2.5 5

Anomaly detector (STG-NF)

1.5% 0.85±0.14 0.56±0.44 0.45±0.1 0.17±0.1
5% 0.94±0.016 0.83±0.097 0.6±0.096 0.19±0.051
12% 0.92±0.018 0.67±0.18 0.74±0.12 0.36±0.085
24% 0.89±0.051 0.79±0.002 0.59±0.027 0.37±0.1

Classifier (ST-GCN)

1.5% 0.97±0.011 0.89±0.014 0.61±0.0023 0.3±0.007
5% 0.98±0.0077 0.92±0.0038 0.79±0.016 0.5±0.0032
12% 0.99±0.0049 0.96±0.0056 0.88±0.013 0.6±0.0075
24% 0.99±0.0041 0.98±0.0016 0.92±0.0035 0.71±0.003

Table S2: Architecture performance on synthetic data. The standardized area under the precision-
recall curve of the two models for different levels of frequency for the rare behavior (rows, column 2)
and similarity between the frequent and rare behaviors (columns 3-7). Performance ranges from poor
(0.17, dark blues) to excellent (0.99, yellows). ST-GCN classifiers are superior across the board. When
behavior is distinct (column 3) anomaly detection yields decent results with no labeling effort invested,
however, performance degrades quickly with similarity.
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All in all these results establish that, given sufficient data, graph classifiers deliver high performance
even under extreme imbalances. Additionally, they highlight that while rarity may not be an issue by
itself when dealing with fine-grained behaviors it hurts performance considerably. However, the question
that remains is how we find the labeled instances of rare behaviors to train these highly performant
classifiers. This motivated us to find a way to quickly obtain and annotate rare behaviors using the
anomaly detector which, though less performant, requires no labeled samples.

2.2.2 Biological datasets

In all biological datasets, like the synthetic data, ST-GCNs show superior results (Figure S4) despite the
high data imbalance. Unsupervised STG-NFs, for 2 out of 3 datasets, show drastically lower performance.
It has been previously shown that STG-NF is adversly affected when the train set has a high percentage
of abnormal samples [4]. During some preliminary experimentation, we found this to be partially, though
not entirely, the case here. Integrating insights from the synthetic regime, this reduced performance in
the unsupervised approach implies a higher degree of similarity between rare and common behaviors.
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Figure S4: Architecture performance on biological data. Precision-Recall curves for each of the ex-
perimental datasets (panels a-c). ST-GCN classifiers (orange) dominate performance. Unsupervised
Normalizing Flows (green) are not competitive on their own (except for panel b).
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