
QuantAttack: Exploiting Quantization Techniques
to Attack Vision Transformers

Supplementary Material

A. Quantization Preliminaries
Quantization reduces the computational and memory de-

mands of inference by using low-precision data types, such
as 8-bit integers, instead of 32-bit floating points. This ap-
proach decreases memory usage and energy consumption,
speeds up operations like matrix multiplication, and enables
model deployment on embedded devices that often only
support integer data types [2]. Two prevalent techniques in
8-bit quantization are zero-point quantization and absolute
maximum (absmax) quantization. Both of these methods
involve mapping floating-point values to a more compact
int8 (1 byte) representation. This is achieved by normal-
izing the input values through scaling with a quantization
constant.

A.1. Absolute Maximum Quantization

The absolute maximum method transforms inputs from
a 16-bit floating point format into an 8-bit integer in the
range of [−127, 127]. This transformation is achieved by
multiplying the input matrix Xf16 by a scaling factor Sf16.
The scaling factor is computed as the ratio of 127 to the
maximum absolute value in the entire tensor (infinity norm).
The transformation formula is expressed as:

Xi8 = ⌊Sf16Xf16⌉ , where Sf16 =
127

∥Xf16∥∞
(1)

Here, ⌊·⌉ represents rounding to the nearest integer.

A.2. 8-bit Matrix Multiplication with 16-bit Floats

Considering hidden states Xf16 ∈ Rs×h and weights
Wf16 ∈ Rh×o, an 8-bit matrix multiplication resulting in
16-bit outputs is performed in the following way:

Cf16 ≈ Sf16·Ci32 = Sf16·Xi8Wi8 = Sf16·Q(Xf16)Q(Wf16)
(2)

Here, Q(·) represents the quantization operation (either
absolute maximum or zeropoint).

A.3. Vector-wise Quantization for Matrix Multipli-
cation

This method introduces a granular approach to quantiza-
tion by assigning unique scaling constants to each row of

Xf16 and each column of Wf16. The matrix multiplica-
tion result is then dequantized using the outer product of
the scaling constants vectors cxf16

∈ Rs and cwf16
∈ Ro:

Cf16 ≈
1

cxf16
⊗ cwf16

Ci32

= S ·Ci32

= S ·Xi8Wi8

= S ·Q(Xf16)Q(Wf16),

(3)

B. The LLM.int8() Quantization Technique

A significant problem for large-scale 8-bit transformers
is that they have large magnitude features (columns), which
are important for transformer performance and require high
precision quantization. However, vector-wise quantization
quantizes each row for the hidden state, which is ineffec-
tive for outlier features. Therefore, a new decomposition
technique is developed, which focuses on high precision
multiplication for these particular dimensions. A mixed-
precision decomposition for matrix multiplication is pro-
posed, where outlier feature dimensions are separated from
non-outlier ones.

Formally, during inference, for every quantized layer,
given the hidden states Xf16 ∈ Rs×h and weights
Wf16 ∈ Rh×o with sequence dimension s, feature dimen-
sion h, and output dimension o, the main steps for efficient
matrix multiplication are as follows (an illustration is shown
in Figure 1):
1. Outlier Extraction: From the input hidden states Xf16,

extract all column indices that contain at least one outlier
(i.e., absolute values that are larger than a certain thresh-
old τ) into the set O = {i | ∃|Xi

f16| > τ, 0 ≥ i ≥ h}.
2. Mixed-Precision Multiplication: The matrix multipli-

cation process is divided into two segments. Outliers
are multiplied using the standard matrix multiplication
in float16, while non-outliers are first quantized (Sec-
tion A.1) to their 8-bit representation and then multiplied
in int8. This involves row-wise quantization for the hid-
den state and column-wise quantization for the weight
matrix (Section A.3).

1

Figure 1. Illustration of mixed-precision matrix multiplication in the LLM.int8() quantization technique. The image is taken from [3].

Algorithm 1 LLM.int8() Matrix Multiplication

Require: Inputs Xf16 ∈ Rs×h, Weights Wf16 ∈ Rh×o,
Threshold τ ∈ R

1: O ← ∅ {Initialize outlier set}
2: for i← 0 to h− 1 do
3: if max(|Xf16[:, i]|) > τ then
4: O ← O ∪ {i} {Add index to outliers}
5: Xi8 ← quantize(Xf16) {Quantize input}
6: Wi8 ← quantize(Wf16) {Quantize weights}
7: Mout ← matmul f16(Xf16[O],Wf16[O]) {f16 multi-

ply for outliers}
8: Mnon ← matmul int8(Xi8,Wi8[O]) {Int8 multiply

for non-outliers}
9: Mnon ← dequantize(Mnon) {Dequantize result}

10: Cf16 ←Mout +Mnon {Combine results}
11: return Cf16

3. Dequantization and Aggregation: The non-outlier re-
sults are dequantized back to float16 and combined with
the outlier results to form the final output (Section A.2).
More formally, the matrix multiplication can be de-

scribed as:

Cf16 ≈
∑
h∈O

Xh
f16Wh

f16 + Sf16 ·
∑
h/∈O

Xh
i8Wh

i8 (4)

where Cf16 represents the output tensor in float16,
(Xh

f16,W
h
f16) represent the float16 input and weight for

outliers, Sf16 is the denormalization term for int8 inputs
and weights, and (Xh

i8,W
h
i8) represent the int8 input and

weight for non-outliers. The full procedure is shown in Al-
gorithm 1.

C. Baseline Methods

We compare our attack to two baselines methods:
Sponge Examples [11] and Standard PGD [7].

The Sponge Examples loss function can be formalized in

the following way:

LSponge Examples = −
∑
a∈A

∥al∥2 (5)

where A is the set of all activation values, and al represents
the activations of layer l.

The Standard PGD loss function can be formalized in the
following way:

LStandard PGD = −
M∑

m=1

ym log(ŷm) (6)

where ym denotes the ground-truth and ŷm the predicted
score for class m.

D. Quantized Models Performance
Since the quantization technique used in this paper was

originally proposed for the NLP domain, we first verified
the performance on the quantized models. We compare the
accuracy performance of the quantized and non-quantized
models across 5,000 images randomly selected from the
ImageNet-1K dataset’s validation set. The results show
that the quantized model exhibits the same level of perfor-
mance as the non-quantized model. For ViT, the accuracy
is 80.51% and 80.59% for the quantized and non-quantized
models, respectively. For DeiT, the accuracy is 80.47% and
80.57% for the quantized and non-quantized models, re-
spectively. This demonstrates that the LLM.int8() technique
is applicable for the vision domain.

E. Models Architectures
In Section 5.2.5 we introduce four models differing in

their tasks.
Open-World Localization (OWLv2) [8] is a zero-shot
text-conditioned object detection model that combines vi-
sual and text features using a CLIP backbone [9], efficiently
performing open-vocabulary object detection. In our evalu-
ation, we use the base-size version. For the attack, we use

500 images from the COCO dataset [6], and the correspond-
ing texts are simply the concatenation of the class categories
in each image.
You Only Look at One Sequence (YOLOS) [4] is a
transformer-based object detection model. It employs a bi-
partite matching loss and the Hungarian algorithm, result-
ing in a simplified yet effective approach for object detec-
tion tasks. In our evaluation, we use the small-size ver-
sion. For the attack, we use 500 images from the ImageNet
dataset [6].
Generative Image-to-text Transformer (GIT) [12] is a
decoder-only transformer for vision-language tasks that uti-
lizes CLIP’s vision encoder for integrated text and image
processing. In our evaluation, we use the base-size version.
During our evaluation, we focus on its image captioning
abilities, in which an image is provided as input and the
model is asked to generate a corresponding caption. For the
attack, we use 500 images from the ImageNet dataset [6].
Whisper [10] is a sequence-to-sequence model for auto-
matic speech recognition (ASR) and speech translation.
Since Whisper is fully differentiable, similar to the com-
puter vision models above, it is also vulnerable to adversar-
ial perturbations that tamper with the input audio by adding
an imperceptible, carefully-crafted pattern. To demonstrate
that our attack also extends to the audio domain, we employ
a technique similar to the one employed for the computer vi-
sion models, in order to generate the adversarial examples.
In our evaluation, we use the tiny-size version. We use 500
utterances from the FLEURS dataset [1] and examine our
attack’s effect on a quantized Whisper model.

F. Ablation Studies

F.1. Effect of accuracy loss component (λ)

In Section 4.2, we discuss the effect of the different com-
ponents of the loss function (Equation 7 in the paper). The
results presented in Table 1 show the impact to the different
metrics of the values assigned to the λ weight. We found
that increasing λ generally enhances the model’s accuracy.
For instance, when λ increased from 0 to 250, the Top1
accuracy improved from 26% to 94%, and the Top5 accu-
racy saw a similar rise from 47% to 99.8%. However, this
is at the expense of ”overall performance” (processing time,
memory usage, energy consumption, and the number of out-
liers). Specifically, higher λ values tend to decrease out-
liers, as evidenced in Table 1, when λ = 0 the percentage
change of the outliers is 1757.80% compared to 1611.1%
when λ = 250. On the other hand, when setting λ = 500,
the model’s accuracy remains nearly unchanged, reaching
97.8%.

Eventually, we selected the setting that optimally bal-
anced these considerations and chose λ = 50. This con-
figuration led to a satisfying balance of a 90% accuracy rate

λ %Energy [mJ] %Throughput [ms] %Memory [Mbits] %Outliers Accuracy
Top1 Top5

0 7.60% 9.00% 18.10% 1757.80% 26% 47%
25 7.50% 8.90% 17.60% 1725.60% 86% 97%
50 6.90% 8.80% 17.20% 1681.20% 90% 99.5%
75 6.70% 8.70% 17.20% 1667.00% 90% 99.5%

100 6.50% 8.50% 16.80% 1643.30% 91% 99.5%
250 6.40% 8.40% 16.50% 1611.10% 94% 99.8%
500 6.10% 7.20% 16.30% 1518.70% 97.8% 99.8%

Table 1. Comparative analysis of the weight values for the clas-
sification loss component on the ViT model. The values (except
accuracy) represent the percentage change between the perturbed
and original images. Grey line indicates the chosen value.

(Top1) and an outlier percentage of 1681.20% with the Top5
accuracy reaching 99.5%, reflecting our goal to enhance
model accuracy without excessively compromising the at-
tack’s performance. This decision was driven by our aim
to strike a balance between improving accuracy and overall
attack performance as can be seen in Figure 2.

Figure 2. The results of our ablation study examining the effect of
the λ value on the memory usage for the ViT module.

F.2. Hyperparameters ϵ, k, and xtarget

In Section 4, we presented our attack’s methodology,
which consists of several hyperparameters. In this section,
we present the effect of the different values assigned to these
parameters.

F.2.1 Target Value xtarget

In Equation 9 in the paper, we describe the quantization loss
component (Lquant), which consists of the target value xtarget.
The rationale behind choosing a value above the threshold
is to guide the quantization process in a direction that en-
hances the attack performance. From Table 2, we see a
clear trend where the overall performance of the attack im-
proves as the xtarget increases. When xtarget = 70, we ob-
serve a good balance across various metrics. However, as
the xtarget further increases, for example when xtarget is set
at 100, there is a slight decrease in accuracy, despite similar
trends in the other metrics. Taking the xtarget to an extreme
(1M), leads to a sharp decrease in accuracy, highlighting a
clear point where increasing the xtarget no longer benefits the
model’s performance, negatively affecting the performance.

xtarget %Energy [mJ] %Throughput [ms] %Memory [Mbits] %Outliers Accuracy
7 6.80% 6.80% 14.32% 1432.10% 98%
25 8.10% 7.60% 16.61% 1651.00% 96%
70 6.90% 8.80% 17.20% 1681.20% 90%

100 7.60% 7.30% 17.43% 1675.80% 90%
inf 6.60% 7.20% 16.15% 1612.10% 42%

Table 2. Comparative analysis of ViT model for different xtarget

values. The values (except accuracy) represent the percentage
change between the perturbed and original images. Grey line in-
dicates the chosen values.

F.2.2 Top-K Elements

In our study, we have conducted experiments with a range of
K values to assess their influence on the performance of our
attack. As mentioned previously, we consider Xl ∈ Rs×h

as the input hidden state for the lth quantized layer, with the
bit-precision notation omitted for simplicity.

For each input matrix Xl, we select the top K values,
represented by Xtop-k

l ∈ RK×h. The objective is to adjust
these values towards a specified target value xtarget, such that
xtarget > τ .

The loss function for an individual layer is thus formu-
lated as:

Lsingle-q(X
top-K
lq

) =
1

Kh

∑
xh∈Xtop-K

lq

|xh|<τ

(
|xh| − xtarget

)2
(7)

In Table 3, we present a comparative analysis of the ViT
model for different K values. The table highlights how the
choice of K value affects the different metrics. Notably,
K = 4 has better performance in three out of five metrics
and ranked second in the remaining two. This suggests that
K = 10 is a viable alternative under certain conditions.
When considering the extremes, K = 1 demonstrates the
highest accuracy and shows respectable results in process-
ing time and memory usage, indicating its efficiency in spe-
cific contexts. However, a contrasting scenario is observed
when all values from each column are considered K = s,
leading to a noticeable decline in overall performance met-
rics. This indicates that while expanding the scope to K = s
increases comprehensiveness, it adversely affects efficiency
and accuracy.

K %Energy [mJ] %Throughput [ms] %Memory [Mbits] %Outliers Accuracy
1 8.11% 8.03% 17.10% 1529.27% 94%
4 6.90% 8.80% 17.20% 1681.20% 90%

10 5.98% 6.43% 15.40% 1547.86% 96%
all 3.55% 2.92% 9.23% 806.35% 73%

Table 3. Comparative analysis of ViT model for different K val-
ues. The values (except accuracy) represent the percentage change
between the perturbed and original images. Grey line indicates the
chosen values.

F.2.3 Perturbation Bound ϵ

The perturbation bound ϵ is the specified upper limit on
the perturbation values in the PGD attack. In Table 4, we
present the results for different ϵ values using the∞-norm
PGD attack. Predictably, when ϵ = 8

255 , it results in fewer
outliers (1314.50%) and overall shows less impact of the at-
tack’s performance, as it imposes a tighter constraint on the
image perturbation limit. Conversely, a higher epsilon value
leads to more outliers (2122.2%) and the best overall perfor-
mance, however with a trade-off that leads to a visually per-
ceptible perturbation. However, as the ϵ value increases the
attacked image is more perceptible and less stealthy, which
led us to choose a value that is in between the extreme val-
ues that still maintains high attack performance.

ϵ %Energy [mJ] %Throughput [ms] %Memory [Mbits] %Outliers Accuracy
8/255 6.40% 6.50% 13.10% 1314.50% 90%

12/255 6.80% 8.00% 15.70% 1529.20% 90%
16/255 6.90% 8.80% 17.20% 1681.20% 90%
32/255 8.20% 10.90% 21.70% 2122.20% 88%

Table 4. Comparative analysis of ViT model for different epsilons
parameters. The values (except accuracy) represent the percentage
change between the perturbed and original images.

G. Additional Experiments
G.1. Loss on LayerNorm

In section 5.3 we provide a thorough analysis of how the
normalization layers within transformer blocks impact the
effectiveness of our attack. In an attempt to enhance our at-
tack’s performance, we introduced an additional component
to our loss function aimed at directly minimizing the input’s
mean to the normalization layer. We replace Equation 7 in
the paper with:

L = Lquant + λ1 · Lcls + λ2 · LLayerNorm (8)

where Lquant,Lcls are described in Section 4.2 and
LLayerNorm is defined as follow:

LLayerNorm =
1

Lln

Lln∑
i=1

E[Xlln] (9)

where Xlln denotes the input to to the lln−th normalization
layer, and Lln denotes the total number of normalization
layers.

As noted in the paper, this additional component did not
improve our attack’s performance. This phenomena can be
explained by observing the inputs’ mean values when using
the original loss function (Equation 7 in the paper). From
Figure 3 we can see that the original attack already affects
the mean values in the affected layers, showcasing that an
additional loss component aimed at effecting these values is
redundant.

(a) Mean values of normalization layers’ inputs per
block for a clean image.

(b) Mean values of normalization layers’ inputs per
block for an attacked image.

Figure 3. Comparison of mean values of normalization layers’ in-
puts per block between a clean and an attacked image when using
the original loss (Equation 7 in the paper).

G.2. Transferability & Ensemble Across Different
Quantization Methods

In Table 5, we analyze the transferability of our attack
across different quantization techniques, focusing on model
integrity (accuracy). We train perturbations on a model with
one quantization technique and test them on the same model
with a different quantization technique applied. Addition-
ally, we demonstrate the benefits of using an ensemble strat-
egy to enhance the robustness of the attack. Our results
show that perturbations exhibit some degree of transferabil-
ity. For instance, perturbations trained on static PTQ tech-
niques (such as RepQ-ViT or PTQ4ViT) effectively transfer
across these methods. However, perturbations trained on
dynamic PTQ techniques do not transfer as well to static
PTQ techniques and vice versa. The ensemble strategy,
which assumes the attacker has partial knowledge of the set
of possible quantization techniques, yields excellent results,
further enhancing the attack’s effectiveness.

H. Defense

In the countermeasures section, we discuss limiting the
use of high-precision multiplications as a defense mecha-

Attack Trained on Tested on AccuracyType PTQ4ViT Repq-ViT LLM.int8()

Tr
an

sf
er

✔
PTQ4ViT 10%
Repq-ViT 62%
LLM.int8 82%

✔
PTQ4ViT 56%
Repq-ViT 10%
LLM.int8 81%

✔
PTQ4ViT 84%
Repq-ViT 87%
LLM.int8 26%

E
ns

em
bl

e

✔ ✔
PTQ4ViT 22%
Repq-ViT 69%
LLM.int8 28%

✔ ✔
PTQ4ViT 54%
Repq-ViT 10%
LLM.int8 26%

✔ ✔
PTQ4ViT 22%
Repq-ViT 10%
LLM.int8 81%

✔ ✔ ✔
PTQ4ViT 25%
Repq-ViT 10%
LLM.int8 26%

Table 5. Transferability and ensemble analysis across different
quantization techniques when using the ViT model.

nism. We evaluated this approach on 10K images from the
ImageNet validation set.

To limit the number of potential outliers, we first iden-
tified columns containing outliers. Then, we randomly se-
lected a subset of these outlier columns based on a prede-
fined ratio in the range 1-10% (the ratio is measured per
layer). Finally, all remaining columns (not included in the
subset) were clipped below the model’s threshold τ .

As shown in Table 6a, the threshold mechanism does not
negatively effect the model’s accuracy when using a por-
tion higher than 3%. On the other hand, in Table 6b we can
see that when a defense is not used (outliers limit is set at
100%) the number of outliers is substantially higher com-
pared to those when a defense is applied. This approach
underscores the utility of our approach in enhancing the
model robustness against availability-oriented attack on the
dynamic quantization mechanism. Above all, while this de-
fense demonstrates a solid mitigation, in real-world applica-
tions, the threshold still requires manual tuning according to
the system’s requirements.

I. Practical Implications
Following the practical implications discussed in [5], we

consider two different scenarios in which our attack is ap-
plicable in:

• Attacks on cloud-based IoT applications: Typically,
cloud-based IoT applications (e.g., virtual home assis-
tants, surveillance cameras) run their DNN inferences
in the cloud. This exclusive reliance on cloud com-
puting places the entire computational load on cloud
servers, leading to heightened communication between

% Outliers Limit Accuracy

1% 79.49
2% 79.67
3% 80.62
4% 80.75
5% 80.86
6% 80.86
7% 80.88
8% 80.88
9% 80.89

10% 80.89

100%1 80.89

(a) Clean images.

% Outliers Limit Outliers

1% 178
2% 285
3% 380
4% 450
5% 503
6% 560
7% 646
8% 662
9% 737

10% 770

100%1 4000

(b) Adversarial images.

Table 6. Comparison of accuracy and outliers with and without de-
fense at various outlier limits. This defensive measure successfully
maintains high accuracy levels on clean images (a) while substan-
tially reducing the occurrence of outliers on adversarial images
(b). 1Setting the limit at 100% is equivalent to disabling the de-
fense mechanism.

these servers and IoT devices. Recently, there has been
a trend for bringing computationally expensive models
in the cloud to edge (e.g., IoT) devices. In this setup,
the cloud server exclusively handles complex inputs
while the edge device handles ”easy” inputs. This ap-
proach leads to a reduction in computational workload
in the cloud and a decrease in communication between
the cloud and edge. Conversely, an adversary can ma-
nipulate simple inputs into complex ones by introduc-
ing imperceptible perturbations, effectively bypassing
the quantization mechanism. In this scenario, a de-
fender could implement denial-of-service (DoS) de-
fenses like firewalls or rate-limiting measures. In such
a setup, the attacker might not successfully execute a
DoS attack because the defenses regulate the commu-
nication between the server and IoT devices within a
specified threshold. However, despite this, the attacker
still manages to escalate the situation by: (i) height-
ening computational demands at the edge (by process-
ing complex inputs at the edge); and (ii) increasing the
workload of cloud servers through processing a greater
number of samples.

• Attacks on real-time DNN inference for resource-
and time-constrained scenarios: Quantization tech-
niques can be harnessed as a viable solution to opti-
mize real-time DNNs inference in scenarios where re-
sources and time are limited. For example, in real-time
use cases (e.g., autonomous cars) where throughput is
a critical factor, an adversary can potentially violate
real-time guarantees. In another case, when the edge-
device is battery-powered an increased energy con-
sumption can lead to faster battery drainage.

Following the possible implications described above, we

also discuss concrete use cases:

• Surveillance cameras scenario: consider a cloud-based
IoT platform that uses quantized vision transformers to
process and analyze images from a network of surveil-
lance cameras. These cameras monitor various locations
and send image data to a centralized cloud server for real-
time analysis and anomaly detection.
Attack impact: an attacker could exploit the quantiza-
tion mechanism to force the model to use high-bit op-
erations, increasing computational overhead and latency.
This could lead to delays in detecting anomalies, po-
tentially allowing security breaches to go unnoticed for
longer periods. In a high-security environment, such a
delay could have severe consequences, compromising the
safety and security of the monitored locations.

• Edge devices scenario: edge devices, such as smart
cameras or drones, often perform real-time deep neural
network (DNN) inference to analyze data locally before
sending summarized information to the cloud. These de-
vices frequently use acceleration techniques to optimize
performance and reduce energy consumption.
Attack impact: by deploying an adversarial attack on the
quantization mechanism, an attacker could significantly
increase the computational load on the edge device. This
could lead to rapid battery depletion, overheating, and re-
duced operational efficiency. In critical applications, such
as search and rescue missions or autonomous vehicle nav-
igation, such an attack could incapacitate the device, lead-
ing to mission failure or safety hazards.

• Autonomous drones scenario: consider autonomous
drones that use quantized vision transformers for naviga-
tion, object detection, and environmental analysis. These
drones are used in various applications, including deliv-
ery services, agriculture, and surveillance.
Attack impact: an adversarial attack on the quantization
mechanism could overload the drone’s computational re-
sources, leading to navigation errors, reduced flight time,
or complete system failure. Such disruptions could re-
sult in operational inefficiencies or accidents, especially
in complex environments where precise navigation is cru-
cial.
Autonomous vehicles scenario: consider autonomous
vehicles that rely on quantized vision transformers for
tasks such as object detection, lane keeping, and colli-
sion avoidance. These systems must operate in real-time
to ensure safe and efficient navigation on roads.
Attack impact: an adversarial attack on the quantization
mechanism could introduce computational delays or er-
rors in object recognition and decision-making processes.
This might result in delayed or incorrect responses to en-
vironmental stimuli, such as failing to recognize a pedes-
trian crossing or misinterpreting traffic signals. Such dis-
ruptions could lead to traffic accidents, endangering the

safety of passengers, pedestrians, and other road users. In
scenarios where quick decision-making is crucial, even a
slight delay could have catastrophic consequences.

• Wearable health monitors scenario: consider wearable
health monitors that use quantized vision transformers to
analyze physiological data, such as heart rate, activity lev-
els, and sleep patterns. These devices provide real-time
health insights and alerts to users.
Attack impact: an adversarial attack on the quantization
mechanism could compromise the device’s ability to pro-
cess data efficiently, leading to incorrect health metrics
and delayed alerts. This could affect the user’s health
management, potentially missing critical health events
that require immediate attention.

J. Attack Visualizations
In Figure 4, we visualize the adversarial examples and

their corresponding perturbation. In Figure 5, we visualize
the adversarial examples from the baselines and the Quan-
tAttack different attack variants.

Image Perturbation

Figure 4. Adversarial examples with their corresponding pertur-
bation.

Clean Random Standard Sponge Single Ensemble UniversalPGD Examples

Figure 5. Adversarial examples from the baselines and our QuantAttack attacks. The leftmost column shows the clean images. In the
next three columns, we show adversarial examples from random, standard PGD and sponge examples, respectively. The last three columns
include adversarial examples from the different QuantAttack variants.

References
[1] Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera

Axelrod, Siddharth Dalmia, Jason Riesa, Clara Rivera, and
Ankur Bapna. Fleurs: Few-shot learning evaluation of uni-
versal representations of speech. In 2022 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 798–805. IEEE,
2023. 3

[2] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. A gentle summary of llm.int8(): zero degrada-
tion matrix multiplication for large language models, 2022.
1

[3] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication for
transformers at scale. arXiv preprint arXiv:2208.07339,
2022. 2

[4] Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang,
Jiyang Qi, Rui Wu, Jianwei Niu, and Wenyu Liu. You
only look at one sequence: Rethinking transformer in vision
through object detection. Advances in Neural Information
Processing Systems, 34:26183–26197, 2021. 3

[5] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and
Tudor Dumitraş. A panda? no, it’s a sloth: Slowdown at-
tacks on adaptive multi-exit neural network inference. arXiv
preprint arXiv:2010.02432, 2020. 5

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 3

[7] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. 2

[8] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby.
Scaling open-vocabulary object detection. arXiv preprint
arXiv:2306.09683, 2023. 2

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 2

[10] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision. In Inter-
national Conference on Machine Learning, pages 28492–
28518. PMLR, 2023. 3

[11] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Paper-
not, Robert Mullins, and Ross Anderson. Sponge examples:
Energy-latency attacks on neural networks. In 2021 IEEE
European symposium on security and privacy (EuroS&P),
pages 212–231. IEEE, 2021. 2

[12] Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li,
Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang.
Git: A generative image-to-text transformer for vision and
language. ArXiv, abs/2103.01260, 2021. 3

	. Quantization Preliminaries
	. Absolute Maximum Quantization
	. 8-bit Matrix Multiplication with 16-bit Floats
	. Vector-wise Quantization for Matrix Multiplication

	. The LLM.int8() Quantization Technique
	. Baseline Methods
	. Quantized Models Performance
	. Models Architectures
	. Ablation Studies
	. Effect of accuracy loss component ()
	. Hyperparameters , k, and xtarget
	Target Value xtarget
	Top-K Elements
	Perturbation Bound

	. Additional Experiments
	. Loss on LayerNorm
	. Transferability & Ensemble Across Different Quantization Methods

	. Defense
	. Practical Implications
	. Attack Visualizations

