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1. Related Work
This section complements Section 2 in the main paper.

It provides further details on inverse tone mapping and a
concise review of non-learning approaches for inverse tone
mapping. The section also offers an overview of the no-
reference quality assessment research which could benefit
from the proposed GTA-HDR dataset.

1.1. Inverse Tone Mapping

Tone mapping [1, 11, 25] is the process of mapping the
colors of HDR images capturing real-world scenes with a
wide range of illumination levels to LDR images appro-
priate for standard displays with limited dynamic range.
Inverse tone mapping [28] is the reverse process accom-
plished with either traditional non-learning methods or
data-driven learning-based approaches. Fig. 1 illustrates an
overview of the tone mapping pipeline and the process of
inverse tone mapping using a data-driven model. Here, E is
the sensor irradiance and ∆t is the exposure time. The func-
tion fcrf (E∆t) represents the tone mapping process, which
outputs ILDR images given IHDR images captured by the
camera sensor. The main goal of any HDR image recon-
struction technique is to reverse the tone mapping process
using another function f−1

crf (ILDR)/∆t, which outputs re-
constructed ˆIHDR images given ILDR images. The main
challenge is that the steps in fcrf (E∆t) are generally not
reversible [17]. We can, however, approximate the reverse
process with a data-driven model fDL(ILDR,Θ), which re-
constructs ˆIHDR images given ILDR images, where Θ de-
notes the model parameters.

1.2. Non-Learning Methods

Luzardo et al. [20] described an inverse tone mapping
operator that allows higher peak brightness (i.e., over 1000
nits) while converting LDR to HDR images. The process
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Figure 1. Tone mapping and inverse tone mapping processes.
The camera function X is the product of the sensor irradiance E
and exposure time ∆t. The standard image formation pipeline
(tone mapping) can be modeled with the function fcrf (X), where
X = E∆t. The goal of a data-driven inverse tone mapping model
is to learn the function fDL(ILDR,Θ), where Θ are the model
parameters, which correctly approximates the inverse of fcrf (X).

helps preserve the artistic intent of the reconstructed HDR
images. Kovaleski and Oliveira [16] focused on enhanc-
ing the over/underexposed regions of images using cross-
bilateral filtering. Huo et al. [12] presented an inverse tone
mapping technique based on the human visual system. The
approach uses human retina response to model the inverse
local retina response using local luminance adaptation in the
image. Masia et al. [21] addressed the ill-exposed areas of
input LDR images, which are more prone to generate arti-
facts. This method uses an automatic global reverse tone
mapping operator based on Gamma expansion along with



automatic parameter calculation based on image statistics.
Bist et al. [7] proposed a Gamma correction-based approach
that adapts to the target lighting styles of the images. This
work also added a color correction-based operator that re-
constructs the intended colors in the HDR image.

1.3. No-Reference Quality Assessment

Due to the lack of ground truth HDR images and the high
costs of resource-demanding full-reference quality met-
rics [2] such as High Dynamic Range Visual Differences
Predictor [22], research has also accelerated in the field of
no-reference HDR image quality assessment [5, 29]. Some
approaches approximate the High Dynamic Range Visual
Differences Predictor score for perceptual quality assess-
ment of reconstructed HDR images using data-driven meth-
ods, such as CNN [3–5]. Other approaches approximate
general quality score metrics of images (HDR or LDR),
such as Peak Signal-to-Noise Ratio and Structural Similar-
ity Index Measure, using CNN and distortion maps [26].

To address the data gap for no-reference image quality
assessment, the GTA-HDR dataset contributes a set of dis-
torted HDR along with the ground truth HDR and LDR im-
ages. The distorted HDR images can be utilized to develop
no-reference quality assessment methods, e.g., by adopting
a methodology similar to the ones proposed in [3–5]: 1) Es-
timate the full-reference quality scores for pairs of ground
truth and distorted HDR images using an existing metric
such as PSNR, SSIM, HDR-VDP-2/-3, and LPIPS; 2) De-
velop a data-driven method using the full-reference qual-
ity scores and their corresponding distorted HDR images;
and 3) Utilize the developed model to estimate the qual-
ity scores of unseen reconstructed HDR images (i.e., no-
reference quality assessment). Similarly, one can develop
data-driven methods to estimate the quality scores for tone-
mapped LDR and HDR images.

2. Results
This section complements Section 5 in the main paper.

It provides qualitative results to further demonstrate the im-
pact of GTA-HDR on the state-of-the-art in HDR recon-
struction as well as in other computer vision tasks, including
3D human pose estimation, human body part segmentation,
and holistic scene segmentation.

2.1. HDR Reconstruction

Fig. 2 illustrates examples of HDR images reconstructed
by training ArtHDR-Net [6] with the GTA-HDR data in an
end-to-end fashion. The histograms of the ground truth and
the reconstructed images are also included. We can see that
the histograms from the method trained with GTA-HDR
data (i.e., HDROurs) are more similar to the histograms of
ground truth HDR images (i.e., HDRGT) than those from
the method trained without GTA-HDR data (i.e., HDRBase).

We also report the Kullback-Leibler (KL) divergence values
for tone-mapped HDRGT and tone-mapped HDRBase and
HDROurs using the RGB intensities. We see the average KL
divergence of the RGB histogram intensity distributions are
significantly lower for HDROurs compared to HDRBase.

Fig. 3 illustrates further qualitative results from the
state-of-the-art method ArtHDR-Net [6] on extremely un-
der/overexposed images. Similarly, Fig. 4 demonstrates
the performance for arbitrary real images from the Inter-
net. Both these cases show that GTA-HDR trained model
is capable of recovering extremely over/underexposed im-
ages with great fidelity. To further illustrate the contribu-
tion of the GTA-HDR dataset on in-the-wild HDR image
reconstruction, in Fig. 5 we show the results on two im-
ages selected from HDR-Real [19] dataset having extreme
lighting, color, and contrast variations. We also report the
PSNR, SSIM, and HDR-VDP-2 scores.

2.2. Downstream Applications

To further demonstrate the contribution of the proposed
GTA-HDR dataset, this section illustrates its impact on the
state-of-the-art in other computer vision tasks including 3D
human pose estimation, human body part segmentation, and
holistic scene segmentation.

2.2.1 3D Human Pose and Shape Estimation

We used BEV [27] as a state-of-the-art pre-trained 3D hu-
man pose and shape estimator from images. We tested the
BEV model on the reconstructed HDR images from several
versions of the state-of-the-art method ArtHDR-Net [6]. Ta-
ble 1 reports the impact of the image pre-processing step
(utilizing reconstructed HDR images from different ver-
sions of ArtHDR-Net) on BEV performance evaluated on
the AGORA [23] 3D human pose dataset. We report two
commonly used metrics, F1 Score to measure detection ac-
curacy and Mean Per Joint Position Error (MPJPE) to mea-
sure pose accuracy. The results demonstrate that the pre-
processing step enables a significant increase in the perfor-
mance of BEV. In Fig. 6a we provide qualitative results in
support of this quantitative evaluation.

2.2.2 2D Human Body Part Segmentation

In this experiment, we used CDCL [18], a state-of-the-art
body part segmentation model. Similar to the previous
case, we tested the model on reconstructed HDR images
from several versions of ArtHDR-Net [6]. Table 1 reports
the impact of the HDR reconstruction step on the COCO-
DensePose [10] dataset, which is used for CDCL perfor-
mance evaluation. We use the Mean Intersection of Union
(mIOU%), i.e., the mean of all IoUs between predicted and
ground truth masks to measure the accuracy of the predic-
tions. We report the average accuracy for all the body parts



Table 1. Impact of the GTA-HDR dataset on the performance of the state-of-the-art in 3D human pose and shape estimation, 2D
human body part segmentation, and semantic segmentation. We used ArtHDR-Net [6] trained with different datasets for HDR image
reconstruction. The resulting HDR images from 1) AGORA [23] 3D human pose dataset were used by BEV [27] for 3D human pose and
shape estimation; 2) COCO-DensePose [10] dataset were used by CDCL [18] for 2D human body part segmentation; and 3) Cityscapes [8]
dataset were used by SAM [15] for semantic segmentation. R ⊕ S: Real and synthetic data combines all five datasets [9, 13, 14, 24, 30];
GTA-HDR: Proposed synthetic dataset; None: Results without HDR image reconstruction.

3D human pose and shape estimation 2D human body part segmentation Semantic segmentation

Pre-processing Datasets F1 (detection)↑ MPJPE (pose)↓ mIOU%↑ mIOU%↑

None - 0.57 129 66.24 54.24
ArtHDR-Net - 0.58 128.7 67.12 54.27
ArtHDR-Net R ⊕ S 0.58 128.5 67.9 54.26
ArtHDR-Net GTA-HDR 0.61 125.4 69.55 54.29
ArtHDR-Net R ⊕ S ⊕ GTA-HDR 0.65 121.9 74.71 54.36

considered in [18]. The results establish the advantages of
using the proposed pre-processing (i.e., HDR reconstruc-
tion) step. Fig. 6b illustrates the contribution of the GTA-
HDR dataset to this task. The human body part segmenta-
tion results are more accurate with the reconstructed HDR
images than the over/underexposed LDR images. For the
overexposed LDR images, one person is completely missed
in the second image. For the underexposed LDR images,
the output is noisy and erroneous.

2.2.3 Semantic Segmentation

Finally, we report an experiment on another vision applica-
tion, i.e., holistic semantic segmentation of scenes, which is
an important task in robotics and human-robot interaction.
We consider a recent state-of-the-art method SAM [15]
as a pre-trained holistic scene segmentation model. Ta-
ble 1 reports the improvements in the SAM output us-
ing the HDR reconstruction as a pre-processing step with
the Cityscapes [8] dataset. We use Mean Intersection of
Union (mIOU%) as the accuracy measure for segmentation.
The results show steady improvements in the performance
of SAM. Fig. 6c illustrates the impact of the GTA-HDR
trained model ArtHDR-Net [6]. The objects/buildings in
the background are not segmented well in the overexposed
LDR images. Similarly, in the underexposed LDR images,
even the near objects are sometimes segmented erroneously.



LDR HDRBase HDROurs HDRGT

N/A 0.1241 0.0738 KL Divergence

N/A 0.1941 0.0341 KL Divergence N/A 0.0712 0.0238 KL Divergence

N/A 0.3712 0.1872 KL Divergence N/A 0.1003 0.0612 KL Divergence

N/A 0.3933 0.1432 KL Divergence

LDR HDRBase HDROurs HDRGT

N/A 0.2108 0.0191 KL Divergence N/A 0.2912 0.0317 KL Divergence

N/A 0.3519 0.0223 KL Divergence N/A 0.3323 0.0574 KL Divergence

Figure 2. HDR images reconstructed with and without GTA-HDR as part of the training dataset, along with the RGB histograms
and KL-divergence values. Base: HDR images reconstructed with ArtHDR-Net [6] trained without GTA-HDR data; Ours: HDR images
reconstructed with ArtHDR-Net trained with GTA-HDR data; GT: Ground truth.
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Figure 3. Performance of ArtHDR-Net [6]. The state-of-the-art
method was trained with the GTA-HDR dataset and used for HDR
image reconstruction from highly overexposed and underexposed
synthetic LDR images. EV: Exposure value; Ours: HDR images
reconstructed with ArtHDR-Net trained with GTA-HDR data.
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Figure 4. Performance of ArtHDR-Net [6]. The state-of-the-art
method was trained with the GTA-HDR dataset and used for HDR
image reconstruction from highly overexposed and underexposed
real LDR images from the Internet. Ours: HDR images recon-
structed with ArtHDR-Net trained with GTA-HDR data.

LDR HDRBase HDRGTHDROurs

36.6/0.94/68.1 41.7/0.99/71.5 PSNR/SSIM/HDR-VDP-2

35.6/0.93/66.9 42.4/0.98/71.2 PSNR/SSIM/HDR-VDP-2

Figure 5. Performance of ArtHDR-Net [6]. We show the re-
sults on two extreme real in-the-wild images selected from HDR-
Real [19] dataset. These images have extreme lighting conditions,
color variations, and contrast levels. Base: HDR images recon-
structed with ArtHDR-Net trained without GTA-HDR data; Ours:
HDR images reconstructed with ArtHDR-Net trained with GTA-
HDR data; GT: Ground truth.
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(b) 2D human body part segmentation.
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(c) Semantic segmentation.

Figure 6. Impact of GTA-HDR on the performance of the state-of-the-art in 3D human pose and shape estimation, 2D human
body part segmentation, and semantic segmentation. We used ArtHDR-Net [6] trained with the GTA-HDR dataset for HDR image
reconstruction. The resulting HDR images were used by BEV [27] (3D human pose and shape estimation), CDCL [18] (2D human body
part segmentation), and SAM [15] (semantic segmentation). Ours: HDR images reconstructed with ArtHDR-Net trained with GTA-HDR.
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