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1. Annotation Quality Distribution

Fig. 1 compares the distribution of mask quality for each
set of experimental conditions studied. Mask quality is as-
sessed from the IoU of the crowdsourced mask compared to
the curated ground truth mask from the reference dataset.

The upper left plot compares compensation schemes,
with annotators in group A paid per image and annotators
in group B paid per annotated object in the image, with the
same expected payout. Annotations with high IoU com-
pared to the ground truth were more common when annota-
tors were paid per object (light blue bars).

The upper right plot compares time limits, with annota-
tors in group A having no time limit and annotators in group
C having a 3-minute time limit. There was no apparent dif-
ference in the distribution of IoU scores of annotations pro-
duced by the two groups.

The bottom left plot compares task complexity, with an-
notators in group D1 only labeling a single object class per
image and annotators in group D2 labeling at least two dif-
ferent object classes per image. Annotations with high IoU
compared to the ground truth were more common when an-
notators had to label multiple object classes per image (light
purple bars).

The bottom right plot compares annotation drawing tool,
with annotators in group A having access to all draw-
ing tools, and annotators in groups E, F, and G being re-
stricted to polygon, draggable outline, and paintbrush draw-
ing tools, respectively. Annotations with high IoU com-
pared to the ground truth were most common when anno-
tators were restricted to the paintbrush tool (lightest green
bars) and were least common when annotators were re-
stricted to the draggable outline tool (second lightest green
bar).

2. Model Training Hyperparameters

We conducted an evaluation of model hyperparameters
to determine if different training configurations would influ-
ence robustness to different error types. We evaluated batch
sizes from 4 to 16, learning rates from 0.01 to 0.1, momen-
tum from 0.85 to 0.99, and weight decays from 0.0001 to
0.005. Comparisons are displayed in Fig. 2.

Response to hyperparameters was generally consistent
across annotation sources. A batch size of 16 yielded mod-
est improvements in performance compared to a batch size
of 8, though the disparity was minimal beyond 160,000
training iterations. The notable exception was for group A
(images where annotators had free choice of drawing tools,
no time limit, and were paid per image), where early learn-
ing was delayed. In this case, mean IoU on the test set sig-
nificantly lagged the other dataset versions at 80,000 itera-
tions, though training caught up by 320,000 iterations.

Learning rate, momentum, and weight decay all had con-
sistent effects across annotation sources. We found that a
learning rate of 0.02, a momentum of 0.9, and a weight de-
cay of 0.0005 were generally optimal for batch sizes be-
tween 8 and 16. The only exceptions were for group F (im-
ages annotated with the draggable outline tool only), where
increasing the learning rate to 0.05 and decreasing the mo-
mentum to 0.85 produced marginal (< 1%) improvements
in performance.
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Figure 1. Comparisons of distribution of image-level IoU scores for each task configuration. Top left: annotators paid per image (A) vs.
paid per object (B). Top right: annotators given no time limit (A) compared to 3-minute time limit (B). Bottom left: annotators label a
single object class at a time (D1) vs. label all potential object classes at once (D2). Bottom right: annotators use any drawing tool (A) vs.
polygon tool only (E) vs. draggable outline tool only (F) vs. paintbrush tool only (G).
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Figure 2. Evaluation of hyperparameter space. Top left: Batch size did not systematically influence model performance for any annotation
sources except for group A, where learning was delayed at a batch size of 8. Top right: Learning rate had a similar effect on learning across
annotation sources, with learning rate of 0.02 leading to optimal or near optimal performance. Bottom left: Momentum values between
0.85 and 0.95 did not significantly affect training, with values of 0.90 producing marginally better learning outcomes. Bottom right: Weight
decay of 0.0005 led to superior training performance across annotation sources.
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