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1. Datasets
In our paper, we used five datasets to create the multi-

source domain adaptation settings. These datasets are listed
below and summarized in the Tab. 1:
1. BDD100k - The BDD100K [16] is a large-scale diverse
driving dataset. It contains 70,000 training and 10,000 test-
ing images captured across various times, like Daytime,
Night, and Dusk/Dawn. This variation makes it a good
choice for the DA problem.
2. Cityscapes - Cityscapes [3] is an autonomous driving
research dataset with images captured from urban street
scenes. It contains 2,975 training and 500 testing images.
3. Kitty - The KITTI [5] dataset is a self-driving dataset that
comprises a collection of images and associated sensor data
captured from a moving vehicle in urban environments. It
consists of 7,481 training images RGB images.
4. MS COCO - MS COCO [7] is one of the most widely
used benchmark datasets in computer vision. It is a com-
plex dataset having large scale and appearance variations
for the instances. It has around 330,000 images containing
80 object categories.
5. Synscapes - Synscapes [12] is a synthetic autonomous
driving dataset that provides more variability for testing our
method. It consists of 25,000 training images.

2. Study on the Class-Embedding layer
In this section, we visualize the information learned by

the class-embedding layer. Fig. 1 shows the activation of
each class-embedding layer (corresponding to each object
category) with ROI-Pooled features that contain the object
category. For this, we crop the region of the object cate-
gory from the image and find activation with each class-
embedding layer. After that, we use Softmax to normal-
ize the values. It can be observed from Fig. 1 that each
embedding layer is activated most when it matches the
corresponding object category. This shows that the class-
embedding is successfully learning class information. Also,
the under-represented object categories (bike, truck, truck)

are highly activated with their corresponding embedding
layer. It shows that our attention-based instance-level align-
ment mechanism is helping in datasets with class imbalance
by focusing on under-represented classes.

Figure 1. Heatmap showing the activation of each class embed-
ding with instance features of some object categories. The X-axis
represents the list of all the class embedding corresponding to all
the object categories, and the Y-axis represents the object category
present in the ROI-Pooled feature.

3. Increase in number of parameters with
source domains

Earlier works in the MSDA for OD [13, 15] relied on
learning domain-specific parameters. It rapidly increases
training parameters with each source domain, as summa-
rized in Tab. 2. Later, PMT [1] mitigated this by using
prototypes instead of domain-specific subnets. However,
in PMT the number of parameters slightly increases with
each source domain. In contrast, our ACIA doesn’t have
any domain-specific parameters, so there is no change in
the number of parameters with source domains.
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Setting Src.1 # Img. Src.2 # Img. Src.3 # Img. Target # Img.
Cross-Time Day 36,728 Night 27,971 - - Dawn 5,027
Cross-Camera Cityscapes 2,831 Kitty 6,684 - - Day 36,728
Mixed Domain Cityscapes 2,975 COCO 71,745 Synscapes 25,000 Day 36,728

Table 1. Summary of the different MSDA settings used in our study.

Method Number of source domains
1 2 3 4 5

DMSN 45.994 75.426 104.858 134.290 163.722
TRKP 45.994 59.942 73.890 87.838 101.786
PMT 46.586 46.587 46.588 46.589 46.590

ACIA (ours) 45.659 45.659 45.659 45.659 45.659

Table 2. The number of parameters vs the number of source domains. No parameter growth in our method.

4. Equalization Loss v2 for class-imbalance

Focal loss was introduced as an improvement over
cross-entropy loss, it helps in dealing with foreground-
background imbalance. But, the MSDA setting (cross-time)
used in our paper have foreground-foreground class imbal-
ance. In this section, we replace the focal loss for object
detection with equalization loss v2 [11] to tackle the prob-
lem of class imbalance. EQLv2 loss was proposed for long-
tail object detection and have demonstrated significant im-
provements in detecting under-represented objects without
sacrificing performance on more frequent classes. Equal-
ization Loss v2 adjusts the gradients during backpropaga-
tion to address class imbalance in object detection. It ap-
plies a class-specific weighting factor to the gradient of the
classification loss. The frequent classes are down-weighted
and rare classes are up-weighted based on their frequency,
thereby balancing the learning process for all classes. In
Tab. 3, we compare the performance of EQL v2 loss with
focal loss on the cross-time setting. We also trained PMT
with this loss for comparison. It can be observed that in
both the lower and upper bound, EQL v2 is outperforming
focal loss. This shows the effectiveness of EQL v2 loss in
a class-imbalance problem. In case of PMT, EQL v2 is im-
proving their performance by a slight margin. This shows
that PMT is not very effective in imbalance dataset scenar-
ios. For ACIA, there is no improvement when focal loss
is replaced by EQLv2 loss. This further proves that our
method is every effective when dealing with class imbal-
ance problem.

5. Additional Experiments on the Cross-Time
Setting

In this section, we provide some additional results on
the cross-time settings. Here, we present a setting where
source domain contains images which are mostly in bright

Setting Method Focal Loss EQLv2
Lower Bound Source Only 28.9 31.6

MSDA PMT 45.3 45.7
ACIA (Ours) 47.9 47.5

Upper Bound
Target-Only 26.6 28.3
All-Combined 45.6 45.8
Fine-Tuning 50.9 51.7

Table 3. Comparison of performance when using focal loss and
equalization loss v2 for OD on the cross-time setting.

environment while target domain contains dark/dull envi-
ronment. For this, we used Daytime and Dusk/Dawn do-
main of BDD100K as source domains, while Night domain
of BDD100K is used as target domain. This setting is chal-
lenging due to large domain shift between source and target
domain. The result for this setting is reported in Tab. 4,
we also trained PMT and reported their performance for
comparison. It can be observed that, we are outperform-
ing PMT by 2.3 mAP. This shows that our instance-level
alignment performs better when the domain shift is large
between source and target domain.

Setting Method mAP
Lower Bound Source Only 24.2

MSDA PMT 34.9
ACIA (Ours) 37.2

Upper Bound
Target-Only 37.8
All-Combined 42.1
Fine-Tuning 46.8

Table 4. mAP performance of ACIA and baseline methods for
cross-time adaptation on BDD100k, when the two sources are
Daytime and Dusk/Dawn subsets, and the target is the Night sub-
set.



6. Additional Experiments on the Mixed Do-
main Adaptation Setting

In this section, we provide some additional results on
the mixed domain adaptation settings. In the main paper,
we only showed the results when C +M was employed as
the two source domains (because the previous papers fol-
lowed that setting only). In Tab. 5 we compare our results
with PMT1 when C + S and M + S are employed as the
source domain. It can be observed that our method out-
performs PMT for both settings. This further shows that
our attention-based instance alignment performs better than
prototype-based instance alignment with complex domain
shifts.

Method C+S M+S
PMT 30.1 34.9

ACIA (ours) 33.7 35.8

Table 5. Additional results on the Mixed Domain Adaptation Set-
ting.

7. Effect of Class-Alignment in UDA methods
In this section, we show the effect of class-wise align-

ment on UDA methods [6, 9]. Tab. 6 shows the results.
We studied three different cases: (1) No class alignment -
we used their proposed method only. (2) Class-Alignment
with target domain - here we incorporated our class align-
ment component with their method, aligning the source do-
mains and the target domain. (3) Class-Alignment without
target domain - our class alignment component with their
method, but this time only the source domains are consid-
ered. The results clearly show that our class alignment is ef-
fective with both methods. Thus, we can conclude that the
proposed class-conditional alignment is effective for both
UDA and MSDA methods. It can be observed that similar
to our method, removing target data for the instance-level
alignment further enhances the model performance.

Method No Class Class-Align. Class-Align.
Align. w/ Target w/o Target

Strong-Weak [9] 29.9 33.7 34.2
Adaptive Teacher [6] 34.6 36.8 37.6

Table 6. Importance of Class-alignment in UDA methods. The
proposed attention-based class-conditioned aligner is effective for
UDA methods as well.

8. Architecture of the Discriminator Networks
We use two domain classifiers as the discriminator net-

works for adversarial training: an image-level domain clas-

1We trained for this setting using the code provided by them

sifier and an instance-level domain classifier. Their archi-
tecture is summarized in Fig. 2. The image-level domain
classifier receives its input from the final layer of the back-
bone network used for feature extraction. This classifier is
fully convolutional with a final N+1 class prediction layer
(corresponds to the number of source domains plus the tar-
get domain). The instance-level classifier receives its input
from the attention layer. This classifier consists of only lin-
ear layers with a final N-way prediction layer (the target do-
main is not used here because the GT boxes from the target
domain are not available).

Figure 2. Detailed architecture of the networks used for image-
level and instance-level domain classifiers. The activation func-
tions used in image-level and instance-level classifiers are leaky
ReLU and GELU respectively. Additionally, Layernorm is used
in the instance-level domain classifier. (r= no of GT boxes in the
image, h,w = height and width of the feature map, FC = Fully con-
nected layer)

9. Class-wise AP

We also report the detailed class-wise AP of ACIA on
the Cross-Time and Mixed Adaptation settings in Tab. 7
and Tab. 8 respectively. Note that, for the Cross-camera
Adaptation settings, there is only one class, so this is not
applicable.

In both settings, our method outperforms the others for
all classes. The class-wise AP shows improvement both in
the majority and minority classes as well - eg: car (majority)
and traffic sign (minority) in the cross-time settings. In the
mixed adaptation settings, we outperform others for all the
classes, in both the case of two and three source domains.



Setting Source Method Bike Bus Car Motor Person Rider Light Sign Train Truck mAP

Lower Bound
D

Source Only
35.1 51.7 52.6 9.9 31.9 17.8 21.6 36.3 - 47.1 30.4

N 27.9 32.5 49.4 15.0 28.7 21.8 14.0 30.5 - 30.7 25.0
D+N 31.5 46.9 52.9 8.4 29.5 21.6 21.7 34.3 - 42.2 28.9

UDA D+N

Strong-Weak [10] 29.7 50.0 52.9 11.0 31.4 21.1 23.3 35.1 - 44.9 29.9
Graph Prototype [2] 31.7 48.8 53.9 20.8 32.0 21.6 20.5 33.7 - 43.1 30.6

Cat. Regularization [14] 25.3 51.3 52.1 17.0 33.4 18.9 20.7 34.8 - 47.9 30.2
UMT [4] 42.3 48.1 56.4 13.5 35.3 26.9 31.1 41.7 - 40.1 33.5

Adaptive Teacher [6] 43.1 48.9 56.9 14.7 36.0 27.1 32.7 43.8 - 42.7 34.6

MSDA D+N

MDAN [17] 37.1 29.9 52.8 15.8 35.1 21.6 24.7 38.8 - 20.1 27.6
M3SDA [8] 36.9 25.9 51.9 15.1 35.7 20.5 24.7 38.1 - 15.9 26.5
DMSN [15] 36.5 54.3 55.5 20.4 36.9 27.7 26.4 41.6 - 50.8 35.0
TRKP [13] 48.4 56.3 61.4 22.5 41.5 27.0 41.1 47.9 - 51.9 39.8
PMT [1] 55.3 59.8 67.6 29.9 47.6 32.7 46.3 56.0 - 57.7 45.3

ACIA(Ours) 56.1 61.0 69.2 31.9 51.8 39.8 49.2 59.0 - 61.0 47.9

Upper Bound D+N
Target Only 27.2 39.6 51.9 12.7 29.0 15.2 20.0 33.1 - 37.5 26.6

All-Combined 56.4 59.9 67.3 30.8 47.9 33.9 47.2 57.8 - 54.8 45.3
Fine-Tuning 63.3 68.1 72.5 39.3 52.2 37.2 54.1 63.1 - 59.1 50.9

Table 7. Class-wise AP of ACIA compared against the baseline lower bound, UDA, MSDA, and upper bound methods in the cross-time
settings. Source domains are daytime (D) and night (N) subsets and the target is always Dusk/Dawn of BDD100K.

Setting Source Method Person Car Rider Truck Motor Bicycle Bike mAP
Lower Bound C Source Only 26.9 44.7 22.1 17.4 17.1 18.8 16.7 23.4
Lower Bound

C+M

Source Only 35.2 49.5 26.1 25.8 18.9 26.1 26.5 29.7
UDA UMT [4] 30.7 28.0 3.9 11.2 19.2 17.8 18.7 18.5
UDA Adaptive Teacher [6] 31.2 31.7 15.1 16.4 17.1 20.9 27.9 22.9
MSDA TRKP [13] 39.2 53.2 32.4 28.7 25.5 31.1 37.4 35.3
MSDA PMT [1] 41.1 53.5 31.2 31.9 33.7 34.9 44.6 38.7
MSDA ACIA(ours) 43.3 58.1 33.3 35.1 33.7 38.6 45.2 41.0
Upper Bound All-Combined 40.2 60.1 47.1 60.0 29.2 36.3 56.9 47.1
Upper Bound Fine-Tuning 44.1 61.4 49.0 61.1 30.8 39.2 58.8 49.2
Lower Bound

C+M+S

Source Only 36.6 49.0 22.8 24.9 26.9 28.4 27.7 30.9
UDA UMT [4] 32.7 39.6 6.6 21.2 21.3 25.7 28.5 25.1
UDA Adaptive Teacher [6] 36.3 42.6 19.7 23.4 24.8 27.1 33.2 29.6
MSDA TRKP [13] 40.2 53.9 31.0 30.8 30.4 34.0 39.3 37.1
MSDA PMT [1] 43.3 54.1 32.0 32.6 35.1 36.1 44.8 39.7
MSDA ACIA(ours) 44.9 59.2 33.8 33.5 38.3 39.9 46.5 42.3
Upper Bound All-Combined 41.7 63.9 49.5 58.1 31.6 39.1 53.5 48.2
Upper Bound Fine-Tuning 49.2 63.5 56.1 62.6 35.1 43.7 57.2 52.5
Upper Bound C+M+S Target Only 35.3 53.9 33.2 46.3 25.6 29.3 46.7 38.6

Table 8. Class-wise AP of ACIA compared against the baselines in the mixed adaptation settings. Source domains are Cityscapes(C), MS
COCO(M), and Synscapes(S) datasets while the Daytime domain of BDD100K is the target domain.

10. More Detection Visualization

In Fig. 3 we present more visualization of the detec-
tions on BDD100k cross-time for the three multi-source
adaptation approaches presented in the paper: no class-
wise adaptation (similar to [13,15]), prototype-based class-
conditional adaptation [1] and our attention-based class-
conditional adaptation. From the visualizations, it can be
observed that our method is performing better detection

compared to the other approaches highlighting the impact
of an efficient class-conditioned alignment.



(a) Methods w/o class alignment. (b) Prototype-based method. (c) Our ACIA method.

Figure 3. Comparison of instance-level adaptation detection on BDD100k cross-time setting. (a) MSDA without class-conditioned instance
adaptation as in [13, 15]. (b) With the prototype-based class-conditional adaptation [1]. (c) ODs with our ACIA approach.
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