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6. Additional ablation studies
Additionally to our main experiments, we present ablation

studies on further aspects of our proposed framework. These ab-
lation studies give a deeper understanding of the components’ dy-
namics and guide future reimplementations and adaptions.

6.1. Generalizability
In Table 4, we present the results of our experiment E) (see Ta-

ble 1) with one additional configuration. In this configuration, we
pretrain the model on the synthetic OCTA dataset [35] instead of
the U.S. cities dataset [22]. This pretraining strategy outperforms
all baselines and increases the performance compared to our main
experimental setting (see Section 4). We attribute this improve-
ment to the smaller domain gap between the new source domain
(i.e., retinal blood vessels) and the target domain (i.e., a mouse’s
cerebrovasculature). These results show how our method gener-
alizes seamlessly to new domains. Furthermore, they substantiate
the rationale behind our experimental design: by showcasing the
utility of our method in a challenging setting, focused on the most
intricate transfer learning scenarios, we establish its effectiveness
in more straightforward transfer learning situations (as presented
in Table 4 as well.

6.2. Regularized edge sampling loss
Next, we conduct an ablation study on the effect of the regular-

ized edge sampling loss. As explained in Section 4, the new loss
stabilizes training and increases convergence speed. This effect is
shown in Figure 4, where the training loss decreases faster from
the beginning on and convergences towards a lower level com-
pared to the baseline loss formulation. This effect can be observed
across all datasets and training strategies. Also, we experiment
with different foreground-to-background-edge ratios r (see Sec-
tion 3.1). Table 5 shows that the performance stays stable across
a large range of r-values. These results underline our hypothesis
from Section 3.1 that LResln reduces the hyperparameter space
because it does not require careful optimization.

Furthermore, we study the effect of different edge-sampling
strategies on our loss formulation in Table 6. Specifically, we
compare our fixed-ratio upsampling strategy with a varying-r up-
sampling (i.e., for each batch, we randomly choose r with a uni-
form distribution in (, 1]), and a fixed-ratio subsampling strategy.
The decreased performance with a varying-r upsampling strategy
shows that a fixed r is important for our loss formulation. We fur-
ther find that subsampling is a valid alternative in scenarios where
data is extremely scarce (e.g., Experiment A) but performs worse
when more data is available (e.g., Experiment E). Notably, Shit
et al. [42] proposed a one-sided subsampling strategy, i.e., sub-
sampling only the background edges if the ratio is above a certain
ratio. This strategy is problematic when the target dataset contains
dense graphs, in which our loss formulation upsamples the back-
ground edges (see Table 7 for dataset statistics). Furthermore, the
official relationformer repository does use a dynamic subsampling

strategy but selects background edges up to an absolute threshold
m, which introduces strong hyperparameter sensitivity. Table 7
shows that up- or sub-sampling only one edge type (e.g., the back-
ground edges) would not be sufficient.

6.3. Domain adaptation framework
Table 8 shows an ablation study of our domain adaptation

framework’s components. Limg , Lgraph, and Lcst refer to the
optimization terms from Section 3.2. Using the image-level align-
ment alone already yields a performance increase of around 30 %
compared to not using our framework at all. We attribute this ob-
servation to the large image-level differences between the source
and target domain, which hinders knowledge transfer in the feature
extractor if an adversarial does not mitigate it. The graph-level ad-
versarial slightly decreases the performance when being applied
without consistency regularization (i.e., Lcst). This decrease is
likely caused by the abstraction level of the transformer’s tok-
enized graph representation. Without any further guidance (e.g.,
by the image-level domain classifier through consistency regular-
ization), the graph-level classifier does not provide a precise gradi-
ent toward a domain-invariant representation. Combining all three
components yields the best results, supporting our hypothesis that
the graph-level adversarial needs regularization by the image-level
adversarial.

Furthermore, we study the impact of our projection function
and loss formulation without applying our domain adaptation
framework. Table 9 shows that our other contributions alone en-
able transfer learning across dimensions. This enables transfer
learning without access to the target domain during pretraining.
However, even in these cases, our DA framework yields the best
performance. Table 2 shows a similar trend in cases without di-
mension shift.

6.4. Adversarial learning coefficient
In Table 10, we ablate on the domain adversarial learning co-

efficient ω. ω is the factor with which the gradient in the GRL
is multiplied before passing it to the respective model component,
i.e., the feature extractor for the image-level adversarial and the
encoder-decoder for the graph-level adversarial (see Section 3.2).
We use the ω schedule proposed by Chen et al. [10], which in-
creases ω during the training until reaching a fixed maximum. Ta-
ble 10 shows that the right choice of ω is crucial and that a sub-
optimal value can decrease downstream performance. We attribute
this observation to the model’s tradeoff between learning to pro-
duce domain-invariant features (i.e., domain confusion) and task
learning (i.e., graph extraction). If ω is too large, the adversarial
loss dominates the task loss, and the network does not learn how
to produce meaningful features. If it is too small, the domain gap
between the source and target domain stays too large, and knowl-
edge transfer is impeded. Figure 5 shows how a small ω (e.g.,
ω = 0.3) is not sufficient to learn domain-invariant features while
an ω-value that is too large does not increase domain confusion but
obstructs learning the core task. Note that the specific ω value must
be optimized for the used datasets and is not domain-invariant.

6.5. Target dataset size
Lastly, Figure 6 shows the results of an ablation study on the

target dataset size. We plot the harmonic mean of node and edge



Table 4. Ablation study on the pretraining dataset. As the domain gap between the source and target domain decreases, the downstream
performance increases. We show that our method is generalizable across different pretraining datasets.

Fine Tuning
Training Set

(Pre-)Training
Strategy

Node-
mAP→

Node-
mAR→

Edge-
mAP→

Edge-
mAR→ SMD ↑

Microscopic
images [47]

No Pretraining [18] 0.231 0.308 0.249 0.329 0.017
Self-supervised [9] 0.344 0.404 0.363 0.425 0.017
Supervised ε ε ε ε ε
Ours, pretr. on cities 0.483 0.535 0.523 0.566 0.017
Ours, pretr. on OCTA 0.548 0.583 0.588 0.615 0.016
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Figure 4. Training loss curves. The orange line depicts the training loss without our regularized edge sampling loss LResln and the blue
line with LResln, respectively. LResln shows faster convergence from the beginning on.

Table 5. Ablation study on the loss ratio r for LResln as described
in Section 3.1 (experiments congruent to Table 1). We observe that
LResln is stable across varying loss ratios and does not require
sensitive hyperparameter tuning.

Experi-
ment r

Node
mAP

Node
mAR

Edge
mAP

Edge
mAR

D

0.05 0.3539 0.4446 0.2166 0.3102
0.1 0.3564 0.4498 0.2209 0.3218
0.15 0.3470 0.4380 0.2164 0.3122
0.2 0.3532 0.4449 0.2203 0.3193
0.3 0.3451 0.4351 0.2183 0.3153
0.5 0.3470 0.4407 0.2231 0.3242
0.8 0.3462 0.4394 0.2253 0.3288

mAP (see Section 4) of our method and the no-pretraining base-
line against the size of the target dataset. We observe that our
method consistently outperforms the baseline across all dataset
sizes. However, as the number of samples increases, the perfor-
mance difference between the two methods decreases. This obser-
vation is expected because transfer learning becomes less effective
(and is also less required) when enough target domain samples
are available. Our framework is especially useful if target data is

scarce.

7. Model & training details

To find the optimal hyperparameters, we follow a three-step
approach. First, we optimize the model architecture hyperparam-
eters (e.g., model size) with a random weight initialization (i.e.,
no transfer learning) on the target task. Then, we fix these hy-
perparameters for the remainder of the optimization process. An
overview of the model hyperparameters for each experiment can
be found in Table 11. Second, we optimize the training hyper-
parameters (e.g., learning rate or batch size) for pretraining on
the source task with the fixed model architecture hyperparame-
ters from step 1. Third, we use the pretrained model with the best
performance on the source task and optimize the training parame-
ters on the target task for each training strategy separately on the
validation set. We follow this approach because optimizing the
whole pipeline (including pretraining and fine-tuning) in a brute-
force manner would require too many resources in terms of com-
putational power and energy consumption. Table 12 depicts the
training hyperparameters for the target task for all the experiments
listed in Section 4.



Table 6. Ablation study on different edge sampling strategies.

Strategy Experiment A Experiment E
node-mAP edge-mAP node-mAP edge-mAP

subsampling 0.172 0.125 0.237 0.277
varying-r 0.156 0.115 0.218 0.134
oversampling (ours) 0.173 0.129 0.267 0.323

Table 7. Edge statistics for the used datasets. The varying ratios
between active and background edges underline the utility of our
dynamic loss formulation. Different datasets require upsampling
for active and background edges.

Dataset Avg.
Edges

Avg. edge
ratio

Upsampling
background

Upsampling
active

20 U.S. Cities 6.37 0.53 92.5% 7.5%
Agadez 5.05 0.75 96.2% 3.8%
Munich 4.69 0.77 97.1% 2.9%
Synth. OCTA 32.57 0.05 1.4% 98.6%
OCTA-500 11.07 0.18 47.5% 52.5%
Synth. MRI 22.37 0.07 0.3% 99.7%
Microscopy 33.31 0.05 0.3% 99.7%
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Figure 5. cka-similarity [24] (y-axis) between the feature repre-
sentations of source and target domain during pretraining. alpha
must be sufficiently large such that the similarity increases dur-
ing training. From a certain threshold on, the similarity does not
increase further. We associate a high similarity between both do-
mains with the model learning domain-invariant features.

8. Datasets
In the following, we describe the properties and sampling of

our six diverse image datasets and the unlabeled datasets we used
for the self-supervised baseline.

8.1. Training set - 20 U.S. Cities
[22] is a city-scale dataset consisting of satellite remote sensing

(SRS) images from 20 U.S. cities and their road graphs covering
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Figure 6. F1-scores (y-axis) over different target dataset sizes (x-
axis). The F1-score is calculated between the node and edge mAP
as described in Section 9. The orange line depicts the F1-scores
of the no-pretraining baseline, and the blue line with our contribu-
tions, as described in Section 4. The x-axis is in logarithmic scale.
We observe that our contributions are significantly reducing data
requirements, especially when data is scarce.

a total area of 720 km2. The satellite images are retrieved in the
RGB format via the Google Maps API [19]. The corresponding
road network graphs are extracted from OpenStreetMap [20]. We
cut the resulting images and labels into overlapping patches of
128x128 pixels with a spatial resolution of one meter per pixel.
In these patches, we eliminate redundant nodes (i.e., nodes of de-
gree 2 with a curvature of fewer than 160 degrees) to simplify the
prediction task [4].

8.2. Agadez and Munich, cities around the globe
We create our own image dataset from OpenStreetMap2 covering
areas that differ from those covered by the 20 U.S. cities dataset in
terms of geographical and structural characteristics. Geographical
characteristics refer to the area’s natural features (e.g., vegetation),
while structural characteristics relate to anthropogenic (human-
made) structures that affect an area’s surface (e.g., street type) or
layout (e.g., city type). The complete dataset contains a 4 km2

area of 11 cities with different characteristics in different parts of
the world. Both source images and labels were obtained in the
same manner as for the 20 U.S. cities dataset [22]. Our dataset is

2
https://www.openstreetmap.org

https://www.openstreetmap.org


Table 8. Ablation study on our domain adaptation framework in a transfer learning setting (experiments congruent to Table 1). Limg ,
Lgraph, and Lcst refer to the optimization terms from Section 3.2. We find that performance improvements are associated with all
adaptation components. Using the complete optimization term as presented in Section 3.3 yields the best results.

Exper-
iment Limg Lgraph Lcst

Node
mAP

Node
mAR

Edge
mAP

Edge
mAR

C

✁ ✁ ✁ 0.3423 0.4341 0.2581 0.3414
✂ ✁ ✁ 0.4286 0.5073 0.3293 0.4264
✁ ✂ ✁ 0.3264 0.4136 0.2355 0.3117
✂ ✂ ✁ 0.4071 0.4980 0.2685 0.3831
✂ ✂ ✂ 0.4909 0.5712 0.3656 0.4887

Table 9. The performance of our contributions with and without
our DA framework in the additional experiment from Table 4. We
show that smaller domain gaps (here, from OCTA to microscopy
images) can be bridged without our DA framework even with di-
mension shift.

Method node-mAP node-mAR edge-mAP edge-mAR

No Pretraining 0.231 0.308 0.249 0.329
No DA 0.508 0.549 0.551 0.584
Ours 0.548 0.583 0.588 0.615

Table 10. Ablation study on the domain adversarial learning coef-
ficient ω (experiments congruent to Table 1). ω must be optimized
such that the adversarial loss balances with the graph extraction
loss. An ω value of 0 is equivalent to not using the domain adap-
tation framework.

Experi-
ment ω

Node
mAP

Node
mAR

Edge
mAP

Edge
mAR

C

0.0 0.3884 0.4755 0.2947 0.3767
0.1 0.3123 0.4076 0.2258 0.3044
0.3 0.3381 0.4287 0.2439 0.3240
0.5 0.4563 0.5395 0.3614 0.4618
0.8 0.4623 0.5458 0.3464 0.4687
1.0 0.4909 0.5712 0.3656 0.4887
1.5 0.3914 0.4726 0.2854 0.3897
2.0 0.0530 0.1719 0.0214 0.0451

accessible in our GitHub repository 3.
For our experiments, we choose two cities, Agadez and Mu-

nich, whose characteristics differ from the 20 U.S. cities dataset in
different aspects as displayed in Table 13. We strategically choose
those cities to investigate how differences in specific characteris-
tics between the source and target domain affect knowledge trans-
fer and how transfer learning strategies should be adapted to these
differences. We especially test our hypothesis that surface-level
characteristics are captured by different components than layout-
level characteristics. These new datasets enable the verification
because Agadez differs from 20 U.S. cities in surface-level char-
acteristics (e.g., vegetation, street type, and buildings) but shares
a similar city layout (i.e., grid plan). Note that although Agadez

3GitHub repository will be made publicly available upon acceptance

has a historical city center, we chose a part of the city that follows
the typical grid layout. Contrary to this, Munich is similar to U.S.
cities in surface-level characteristics while following a different
city layout (i.e., a historical European city layout). We test each
city dataset separately.

8.3. Synthetic OCTA
The synthetic Optical Coherence Tomography Angiography
(OCTA) dataset [35] consists of synthetic OCTA scans with in-
trinsically matching ground truth labels, namely the corresponding
segmentation map and the vessel graphs. The images were created
using a simulation based on the physiological principles of an-
giogenesis to replicate the intricate retinal vascular plexuses [40],
followed by incorporating physics-based modifications to emulate
the image acquisition process of OCTA along with the usual arti-
facts. We project the 3D OCTA images along the main axis, split
them scan-wise between training and testing sets, and extract 2600
overlapping samples of 128 ↓ 128 pixels. For training our self-
supervised baseline, we use the same procedure on 200 additional
synthetic OCTA scans to extract almost 100,000 patches.

8.4. OCTA-500
The OCTA-500 dataset [26] includes 300 OCTA scans with a 6
mm ↓ 6 mm field of view. The 400↓400 large en-face projection
images were manually annotated with sparse vessel labels. We ex-
tract the graphs from these segmentation maps using the method
presented by Drees et al. [14]. We split the scans patient-wise
between training and testing sets and create around 3000 overlap-
ping patches with a spatial size of 128 ↓ 128. Furthermore, we
combine the OCTA scans from OCTA-500 with the scans of the
ROSE dataset [32] to obtain around 40,000 patches for training
our self-supervised baseline. This combination is necessary for an
unlabeled dataset large enough for self-supervised pretraining.

8.5. Synthetic MRI
The Synthetic MRI dataset [46] is a synthetical 3D dataset that
simulates the characteristics of clinical vessel datasets. The orig-
inal dataset provides ground truth labels for vessel segmentation,
centerlines, and bifurcation points. The ground truth graphs are
obtained with the method described by Drees et al. [14]. We cut
the volumes and their graphs in overlapping patches of 64↓64↓64
voxels. We use the same dataset with all 80,000 patches for our
self-supervised pretraining.



Table 11. Model details for each experiment. The hyperparameters are the same for each model of the respective experiment. The latent
space resolution is controlled via the CNN backbone’s stride. It determines the feature size between the backbone and the transformer.

Target Set

Backbone Latent Space Transformer FFN

Type Hid. Dim. Resolution Hid. Dim. # Lay. # Obj
Token

# RLN
Token Hid. Dim.

Agadez ResNet101 512 Multi-Level 512 3 80 2 1024
Munich ResNet101 512 Multi-Level 512 3 80 2 1024
Synthetic OCTA ResNet101 512 Multi-Level 512 3 80 5 1024
OCTA-500 ResNet101 512 Multi-Level 512 3 80 2 1024
Synthetic MRI SeresNet 256 2↓ 2↓ 2 552 4 120 2 1280
Whole Brain Vessels SeresNet 256 2↓ 2↓ 2 552 4 120 2 1280

Table 12. Training details and hyperparameters for each trained model.

Experiment Batch Size Epochs
Learning Rate Loss Coeff.

Backbone Transformer ϑgIoUϑgIoUϑgIoU ϑclsϑclsϑcls ϑregϑregϑreg ϑReslnϑReslnϑResln ϑregϑregϑreg

A 32 100 0.00002 0.0002 2 3 5 5 1.0
B 32 100 0.00002 0.0002 2 3 5 5 1.0
C 32 100 0.00002 0.0002 2 3 5 5 1.0
D 32 100 0.00007 0.00007 3 4 2 6 0.8
E 32 100 0.00007 0.00007 3 4 2 6 0.8

8.6. Whole Brain Vessels
The Whole Brain Vessel dataset [37] is a publicly available open
graph benchmark dataset for link prediction (ogbl-vessel4). It con-
sists of a graph representing the entirety of the mouse brain’s vas-
cular structure down to the capillary level. Todorov et al. [47]
obtained the raw vessel scans using tissue-clearing methods and
fluorescent microscopy and then segmented the brain vasculature
using CNNs. The dataset has an image, segmentation, and graph
representation. We create overlapping patches with a spatial size
of 50↓50↓50 voxels and remove artifactual patches (e.g., patches
containing only noise). We extract 43,500 image patches from
an unlabeled whole-brain mouse scan obtained with the vDISCO
pipeline [16] for training our self-supervised model.

9. Evaluation metrics
We choose to evaluate our models’ performance using three

different evaluation metric types: 1) topological metrics, 2) graph
distance metrics, and 3) object detection metrics.

Topological metrics The TOPO-score [6] samples multiple
sub-graphs starting from different seed locations from the ground
truth and measures its similarity to the inferred graph from the
predicted graph with the same seed location. The similarity is
measured by matching a fixed amount of points between the two
graphs. Two points from two graphs are matched if the distance
between their spatial coordinates is below a threshold. The result

4
https://ogb.stanford.edu/docs/linkprop/#ogbl-

vessel

of this matching across all sampled subgraphs is used for calculat-
ing precision and recall. This method accurately quantifies a pre-
diction’s geometrical (i.e., the roads’ geographical position) and
topological (i.e., the roads’ interconnections) quality. We use the
implementation and parameters from Biagioni et al. [6]. These
metrics are not implemented in 3D.

Graph distance metrics The street mover distance (SMD)
approximates the Wasserstein distance between a fixed number of
uniformly sampled points along the ground truth graph and the
predicted graph. Intuitively, it represents the minimal distance by
which the predicted graph must be moved to match the ground
truth [4].

Object detection metrics Further, we resort to widely-used
object detection metrics: mean average precision (mAP) and mean
average recall (mAR) [36]. To calculate each detection’s intersec-
tion over union (IoU), we create a hypothetical bounding box of
fixed size around each node. Similarly, we create bounding boxes
around the edges with a minimum spatial size m in all dimen-
sions. This minimum holds for edges that connect two nodes a
and b where the difference between the coordinates in one dimen-
sion is lower than m (e.g. if |ax ↔ bx|< m). We calculate the
mean AP and AR between the values of different IoU thresholds
(i.e., 0.5 and 0.95).

10. Additional quantitative results
In Table 14, we present our main results from Table 1 in addi-

tion to the results’ standard deviation across five mutually exclu-
sive folds of the test set.

https://ogb.stanford.edu/docs/linkprop/#ogbl-vessel
https://ogb.stanford.edu/docs/linkprop/#ogbl-vessel


Table 13. Overview of the used datasets, selected characteristics, and respective training, validation, and test set sizes.

Dataset Road Description Vessel Description Split
Street Type Vegetation Layout Continent Dimension Spatial Size Train Val Test

20 U.S. Cities [22] Sealed Rich Grid-plan N. America 2D 128→128 99.2k 24.8k 25k

Global Diverse Cities
Agadez Unsealed Arid Grid-plan Africa 2D 128→128 480 120 290
Munich Sealed Rich Historical Europe 2D 128→128 440 110 220

Synth. OCTA [35] - - - - 2D 128→128 480 120 2k
OCTA-500 [26] - - - - 2D 128→128 1.6k 400 2.2k

Synth. MRI [40] - - - - 3D 64→ 64 →64 4k 1k 5k
Microscopy [47] - - - - 3D 50→ 50 →50 4k 1k 1.2k

Unlabeled datasets
20 U.S. Cities - - - - 2D 128→128 124k - -
Synth. OCTA [35] - - - - 2D 128→128 96.4k - -
Real OCTA [26, 32] - - - - 2D 128→128 40k - -
Synthetic MRI [40] - - - - 3D 64→ 64 →64 80k - -
Microscopy [16] - - - - 3D 50→ 50 →50 43.5k - -

11. Additional qualitative results
We are providing additional qualitative results in the form of mul-
tiple figures; please see Figure 7 - 11.



Table 14. Main results with standard deviations. Quantitative Results for our cross-dimensional image-to-graph transfer learning frame-
work. All models are pretrained on the U.S cities road dataset. We outperform the baselines across all datasets. We present the standard
deviations in addition to the main results.

Fine Tuning
Training Set

(Pre-)Training
Strategy

Node-
mAP↑

Node-
mAR↑

Edge-
mAP↑

Edge-
mAR↑ SMD ↓ Topo-

Prec.↑
Topo-
Rec.↑

A) TL from roads (2D) to roads (2D)

Agadez [20]

No Pretr. [18] 0.067±0.006 0.122±0.007 0.021±0.005 0.043±0.006 0.062±0.028 0.369±0.051 0.261±0.047

Self-superv. [9] 0.083±0.010 0.156±0.011 0.030±0.005 0.071±0.007 0.030±0.005 0.471±0.0082 0.459±0.039

Supervised 0.161±0.021 0.237±0.023 0.115±0.016 0.177±0.017 0.023±0.009 0.783±0.018 0.711±0.039

Ours 0.163±0.017 0.244±0.015 0.116±0.019 0.172±0.021 0.022±0.003 0.816±0.032 0.614±0.036

Munich [20]

No Pretr. [18] 0.083±0.012 0.120±0.011 0.034±0.013 0.054±0.016 0.235±0.049 0.260±0.057 0.247±0.070

Self-superv. [9] 0.088±0.021 0.145±0.033 0.060±0.015 0.097±0.023 0.155±0.032 0.339±0.035 0.384±0.075

Supervised 0.277±0.022 0.336±0.025 0.207±0.027 0.272±0.031 0.091±0.038 0.682±0.037 0.660±0.041

Ours 0.285±0.015 0.344±0.011 0.224±0.030 0.277±0.031 0.090±0.043 0.726±0.078 0.655±0.070

B) TL from roads (2D) to synthetic retinal vessels (2D)

Synthetic
OCTA [35]

No Pretr. [18] 0.273±0.003 0.375±0.003 0.140±0.002 0.339±0.003 0.005±0.002 0.181±0.004 0.948±0.004

Self-superv. [9] 0.136±0.002 0.260±0.003 0.069±0.002 0.223±0.004 0.031±0.006 0.093±0.005 0.927±0.010

Supervised 0.291±0.003 0.384±0.003 0.170±0.002 0.338±0.005 0.004±0.001 0.211±0.005 0.957±0.007

Ours 0.415±0.005 0.493±0.003 0.250±0.004 0.415±0.004 0.002±0.001 0.401±0.003 0.890±0.007

C) TL from roads (2D) to real retinal vessels (2D)

OCTA-500 [26]

No Pretr. [18] 0.189±0.005 0.282±0.007 0.108±0.004 0.169±0.006 0.017±0.002 0.737±0.007 0.634±0.010

Self-superv. [9] 0.214±0.004 0.305±0.004 0.135±0.001 0.213±0.002 0.016±0.002 0.763±0.012 0.706±0.005

Supervised 0.366±0.004 0.447±0.004 0.276±0.006 0.354±0.007 0.014±0.001 0.862±0.010 0.775±0.011

Ours 0.491±0.006 0.571±0.005 0.366±0.009 0.489±0.007 0.012±0.002 0.877±0.004 0.817±0.011

D) TL from roads (2D) to brain vessels (3D)

Synthetic
MRI [40]

No Pretr. [18] 0.162±0.003 0.250±0.003 0.125±0.004 0.201±0.004 0.013±0.000 - -
Self-superv. [9] 0.162±0.003 0.252±0.003 0.120±0.004 0.193±0.004 0.014±0.000 - -
Supervised ω ω ω ω ω ω ω
Ours 0.356±0.003 0.450±0.002 0.221±0.003 0.322±0.003 0.013±0.000 - -

E) TL from roads (2D) to real whole-brain vessel data (3D)

Microscopic
images [47]

No Pretr. [18] 0.231±0.016 0.308±0.021 0.249±0.017 0.329±0.023 0.017±0.000 - -
Self-superv. [9] 0.344±0.026 0.404±0.029 0.363±0.026 0.425±0.030 0.017±0.000 - -
Supervised ω ω ω ω ω ω ω
Ours 0.483±0.037 0.535±0.039 0.523±0.041 0.566±0.043 0.017±0.000 - -
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Figure 7. Qualitative results for the Agadez dataset. Two columns, from left to right: Image, ground truth graph, baseline, and our method.
Our method consistently outperforms the baselines, which overpredict the edges and nodes for road data.
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Figure 8. Qualitative results for the Munich dataset. Two columns, from left to right: Image, ground truth graph, baseline, and our method.
Our method consistently outperforms the baselines, which overpredict the edges and nodes for road data.
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Figure 9. Qualitative results for the OCTA-500 dataset. Two columns, from left to right: Image, ground truth graph, baseline, and our
method. Our method consistently outperforms the baselines, which underpredict the edges and nodes for the vessel data. It is important to
note that the OCTA-500 dataset labels are on the large vessels. The graph annotations are not provided for all capillaries and are therefore
not learned by the models either.
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Figure 10. Qualitative results for the 3D whole brain vessel dataset. Two columns, from left to right: Image, ground truth graph, baseline,
and our method. Our method consistently outperforms the baselines, which overpredict the edges for the 3D vessel data. Furthermore, the
baseline often predicts implausible triangles between three nodes.
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Figure 11. Qualitative results for the synthetic 3D vessel MRI dataset. Two columns, from left to right: Image, ground truth graph, baseline,
and our method. Our method consistently outperforms the baselines, which overpredict the nodes for the 3D vessel data and underpredict
edges.
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