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1. Additional training details

We train Stage 1 models using cross-entropy loss for
CIFAR10-LT and CIFAR100-LT datasets for 20,000 itera-
tions. In Stage 2, for both classifier and feature tuning cases,
we train the models for 4000 iterations. For ImageNet-LT
dataset, we train the Stage 1 and both the Stage 2 meth-
ods for 200 and 20 epochs, respectively. For iNaturalist18
dataset, we train the Stage 1 and both Stage 2 models for
200 and 10 epochs, respectively. For all models the batch
size of 64 is used. Rest of the experimental settings are bor-
rowed from [9].

2. Dissimilarity of data distributions: P (X) ̸=
P t(X)

In the paper we clearly maintain the distributions P (X)
and P t(X) as distinct in nature. For the sake of complete-
ness we provide a mathematical justification using the ap-
proach of moment matching. In particular, we show that
the first moment of train and test data distribution is not the
same.
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where, µx|y represents the mean of conditional distribu-
tion P (x|y) and µx represents the mean of data distribution
P (x).

*Equal contribution
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(a) Feature tuning in Stage 2
on ImageNet-LT
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(b) Feature tuning in Stage 2
on iNaturalist18

Figure 1. We show model biases for different cases. Bias esti-
mated using class frequencies and proposed method are shown for
ImageNet-LT and iNaturalist18 datasets for logit-adjusted feature
tuning in Stage 2.

Similarly we can show that for the test time distributions,

µt
x =

∫
y

µt
x|yP

t(y)dy (5)

(6)

Given that the class conditional data distributions P (x|y)
and P t(x|y) are the same, we have,

µx|y = µt
x|y (7)

However, since the class prior distributions are not the same
by definition, i.e. P (y) ̸= P t(y), we have

µx ̸= µt
x (8)

And hence,

P (X) ̸= P t(X) (9)
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3. The effective prior for ImageNet-LT and
iNaturalist18 datasets

In Figure 1 we show the model bias estimated using class
frequencies and the effective prior calculated using pro-
posed approach on ImageNet-LT and iNaturalist18 datasets.
From the figure it is clearly observed that model bias is quite
different from empirical bias estimated using class frequen-
cies. In particular, the effective prior is higher for low fre-
quency classes than the class frequency based prior for both
datasets.

ImageNet-LT
Method Many Medium Few All
Bal-Soft [9] 64.10 48.20 33.40 52.30
RSG [14] 63.20 48.20 32.20 51.80
LADE [3] 65.10 48.90 33.40 53.00
DisAlign [16] 62.70 52.10 31.40 53.40
ResLT [2] 63.00 53.30 35.50 52.90
WB+MaxNorm [1] 62.50 50.40 41.50 53.90
MARC [15] 60.40 50.30 36.60 52.30
RBL [6] 64.80 49.60 34.20 53.30
CCL [12]] 60.70 52.90 39.00 54.00
NC-DRW-cRT [4] 65.60 51.20 35.40 54.20
CE 68.11 42.56 14.85 48.63
CE + P2P 63.36 49.99 36.03 53.24
CL 63.85 49.95 34.75 53.23
CL + P2P 62.12 51.18 37.79 53.57
FT 65.83 51.32 28.22 53.82
FT + P2P 62.44 53.34 36.06 54.67

Table 1. The table show many, medium and few shot accuracies
on ImageNet-LT dataset. Best and Second best results are shown
in bold faces and underlined.

4. Multishot accuracies
In Table 1 and Table 2 we show multi-shot accuracies

for ImageNet-LT and iNaturalist18 datasets and compare it
with some of the recently published methods. We note from
the table that proposed approach achieves highest overall
accuracy while shot-wise accuracies are not affected much.
We also show in Figure 2 the performance on iNaturalist18
for models trained with plain CE and with logit-adjustment
(CL and FT). It can be noted that, P2P outperforms baseline
class frequency based adjustment in all the cases.

5. Additional results on test time shifted imbal-
ance

In Table. 3 we compare model performance for test-time
shifted distributions with additional baselines and a few
more distribution shifts. We note the superior performance
of proposed algorithm.

iNaturalist18
Method Many Medium Few All
DisAlign [16] 69.00 71.10 70.20 70.60
LDAM+DRW+SAM [8] 64.10 70.50 71.20 70.10
WB+MaxNorm [1] 71.20 70.40 69.70 70.20
ResLT [2] 68.50 69.90 70.40 70.20
SWA+SRepr [5] 70.70 70.83 70.76 70.79
CC-SAM [17] 65.40 70.90 72.20 70.9
CE 76.33 68.15 60.66 66.03
CE + P2P 67.02 71.05 72.36 71.15
CL 70.35 70.98 71.06 70.81
CL + P2P 68.09 71.15 72.19 71.43
FT 71.81 71.46 70.16 71.12
FT + P2P 66.63 71.73 72.32 71.78

Table 2. The table show many, medium and few shot accuracies
on iNaturalist18 dataset. Best and Second best results are shown
in bold faces and underlined.
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Figure 2. The performance on iNaturalist18 for Stage 1 baseline
(CE) and Stage 2 (CL and FT) are shown. The effect of post-hoc
using class frequency and proposed approach can be observed.

6. Discussion on Distribution Matching

Recent works like [7] have proposed to tackle this dis-
tribution misalignment problem from an optimisation per-
spective, employing the concept of optimal transport. Al-
though the work provides interesting mathematical insights
into relation between the distribution alignment problem
and optimal transport, the method assumes that the marginal
distribution is consistent with a uniform distribution. Unlike
this we impose no such constraint in our proposed approach
rendering further flexibility and simplicity in its implemen-
tation.

Similarly [13] also propose optimal transport based dis-
tribution matching framework for imbalanced partial label
learning. They propose to refine the pseudo-labels in order
to align with the true class prior by reducing the optimal



Forward Uniform Backward

Imbalance ratio 50 25 10 5 2 1 2 5 10 25 50

CE 66.3 63.9 60.4 57.1 52.3 48.63 44.2 38.9 35.0 30.5 27.9

De-Confound [11] 64.1 62.5 60.1 57.8 54.6 52.0 49.3 45.8 43.4 40.4 38.4
Bal-Soft [9] 62.5 60.9 58.8 57.0 54.4 52.3 49.6 46.5 44.1 41.4 39.7
PC Causal Norm [3] 66.7 64.3 60.9 58.1 54.6 52.0 49.8 47.9 47.0 46.7 46.7
PC-Balanced Softmax [3] 65.5 63.1 59.9 57.3 54.3 52.1 50.2 48.8 48.3 48.5 49.0
PC-Softmax [3] 66.6 63.9 60.6 58.1 55.0 52.8 51.0 49.3 48.8 48.5 49.0
LADE [3] 67.4 64.8 61.3 58.6 55.2 53.0 51.2 49.8 49.2 49.3 50.0

Our FT+P2P 67.6 64.9 61.5 58.7 56.4 54.67 52.3 51.0 50.5 50.8 51.1

Table 3. Top 1 Accuracy on test time shifted ImageNet-LT dataset.

Figure 3. Proposed approach is summarized in the figure. The top row illustrates plain CE loss and logit-adjusted loss showing that model
accumulates some bias due to imbalanced training data. We show effective prior calculation for trained model in the bottom row. Once the
prior is calculated, a posteriori probabilities can be corrected using proposed approach as shown in the bottom row.

transport objective function.
[10] present a novel variant of the optimal transport

called, Relative Entropic Optimal Transport to learn match-
ing with a specified prior. The manually specified smooth-
ing guidance matrix Q can be seen as a generic representa-
tion for the effective prior.

7. Flow of the proposed approach

We summarise the proposed approach in a block dia-
gram as shown in Figure3. The block diagram illustrates
the different stages involved in the process starting from
bias accumulation in traditional training to bias removal us-
ing the proposed method. Both Logit adjusted training and
Prior2Posterior is depicted along with an illustration show-
ing the Effective Prior computation.
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