
6. Supplementary
6.1. Additional Related Works

The field of medical image registration is undergoing a
paradigm shift with the rise of transformer-based methods,
which are increasingly surpassing traditional convolutional
neural networks (CNNs). While CNN-based approaches
like SAME [39] and SAMConvex [38] relied on pre-trained
models and carefully designed pipelines to capture global
context, transformer architectures such as H-ViT [19] lever-
age multi-resolution high-level features to represent low-
level voxel patches, overcoming the localized feature ex-
traction limitations of CNNs.

Our proposed method advances medical image registra-
tion by introducing Hi-Res tokenization for efficient high-
resolution feature extraction and a plane-based attention
mechanism to balance localized focus with global context.
Additionally, the multi-resolution variant captures spatial
information early in the network, enabling the model to dy-
namically learn features across resolution scales and effec-
tively capture intricate structural variations in medical im-
ages.

6.2. Additional Dataset and Training Details

6.2.1 Datasets Details

OASIS. Preprocessing involves bias correction, skull
stripping, alignment and cropping to dimensions of 160 x
192 x 224. Registration accuracy is reported by perform-
ing evaluation of corresponding segmentation masks for 35
anatomical structures. Additionally, FreeSurfer [25] was
used for pre-processing the brain MRI images, and it has
label maps for 35 anatomical structures. Automated seg-
mentation masks are used for evaluation of registration ac-
curacy.

Remind2Reg. ReMIND2Reg dataset is a pre-processed
subset of the ReMIND dataset [31], containing multi-modal
pre- and intra-operative data from patients who underwent
brain tumor resection at Brigham and Women’s Hospital be-
tween 2018 and 2024. This dataset is part of the Learn2Reg
2024 challenge, which aims to register 3D iUS images with
either ceT1 or T2 MRI images to account for brain shift
during tumor resection, requiring models to handle large
deformations and missing data scenarios. The dataset is
divided into 155 image pairs for training, 10 image pairs
for validation, and 40 for testing. The images are prepro-
cessed into NIfTI format, cropped to a size of 256 × 256 ×
256 with 0.5mm isotropic spacing, and co-registered where
necessary.

IXI. The IXI dataset was augmented by flipping in ran-
dom directions while training, as done by baselines. Evalu-

ation was performed on corresponding segmentation masks
for 29 anatomical structures with preprocessed size of 160
× 192 × 224.

6.2.2 Further Training Pipeline Details of EFFICIENT-
MORPH: Data Flow

Figure 2A illustrates the proposed end-to-end registration
network. The encoder processes two input volumes—a
fixed and a moving image—by dividing them into non-
overlapping 3D patches with dimensions 2× H

S × W
S × D

S ×
C, where S = 2, 4, 8. As S increases, high-resolution fea-
tures are progressively lost. For S = 2, a Hi-Res Tokeniza-
tion stage is employed to add depth-wise patch features and
use a linear projection layer, enhancing fine-grained fea-
tures while maintaining complexity similar to S = 4 (see
Section 3.1). This stage increases the channel dimension
by d and incorporates positional encoding to preserve high-
resolution feature tracking. For S = 4 and S = 8, Hi-Res
Tokenization is omitted to see if Hi-Res block actually uti-
lizing the features.

Each patch, now termed as tokens, is processed through
two efficient transformer blocks separated by a patch merg-
ing layer for downsampling. These transformer blocks may
feature different plane attention modules (xy or yz or zx)
depending on the variant. The bottleneck features from the
encoder are then passed through convolutional layers (de-
coder) to generate a nonlinear 3D deformation field. This
field is applied to the moving image using a PyTorch spa-
tial transformer, similar to VoxelMorph [7] and TransMorph
[9]. The loss function integrates image similarity (local nor-
malized cross-correlation) and regularization (bending en-
ergy) losses, following the approach of TransMorph [9] and
Fourier-Net [28]. The architecture utilizes default hyper-
parameters weighted similarly to TransMorph’s [9].

6.2.3 Further Training Pipeline Details of Multi Reso-
lution EFFICIENTMORPH: Data Flow

Figure 2B illustrates the end-to-end data flow for the Multi-
Resolution version of EFFICIENTMORPH. The input is pro-
cessed through two distinct patch embedding layers, each
with different strides, S

′

1 and S
′

2. When a stride of 2 is
used, the Hi-Resolution tokenization strategy described in
Section 3.1 is applied, allowing for efficient handling of
high-resolution patches. Otherwise, the input flows through
two parallel encoders with similar configurations, each cap-
turing features at different resolutions.

The latent dimensions from these encoders are concate-
nated, enabling the model to leverage features across vary-
ing levels of detail. These bottleneck features are then
passed into decoder to produce a nonlinear 3D deformation
field, which is applied to the moving image via a PyTorch
spatial transformer. The loss functions and hyperparameters



remain same across both versions of the architecture, en-
suring smooth integration of multi-resolution features while
maintaining performance stability.

6.3. Additional Ablation Experiments And Quali-
tative Results

6.4. Qualitative Results

Supplementary Figure 5 presents the best, median, and
worst cases for both the baseline TransMorph [9] and the
proposed model variants. It can be observed that the pro-
posed variants achieve higher Dice scores for most anatom-
ical structures, though performance slightly declines when
segmenting smaller anatomies. Supplementary Figure 6
further compares the Dice scores of the proposed models
with the baseline across 19 anatomical substructures, where
the proposed variants consistently outperform the baseline
in the majority of cases.

6.5. Additional Ablation Results

Table 6. Plane Attention Order Ablation. Mean average
dice score and standard deviation are evaluated on 35 seg-
mented anatomies in OASIS with stride = 4 and C=96 for the
EfficientMorph-11 variant.

w/o Seg Loss with Seg Loss
Planes Dice Score ↑ Dice Score ↑
yz-xy 0.795 ± 0.002 0.843 ± 0.0029
xy-zx 0.795 ± 0.005 0.844 ± 0.0033
yz-zx 0.795 ± 0.003 0.844 ± 0.0032
zx-xy 0.795 ± 0.004 0.844 ± 0.0041
zx-yz 0.795 ± 0.003 0.843 ± 0.0036

Table 7. Plane Attention - Pattern Ablations - EM-23. Mean
average dice score and standard deviation are evaluated on 35 seg-
mented anatomies in OASIS with stride = 4 and C=96 for EM-23
variant with segmentation loss.

Planes Dice Score ↑
xy-zx — zx-xy-yz 0.8378 ± 0.0040
yz-xy — zx-xy-yz 0.8436 ± 0.0044
yz-zx — zx-xy-yz 0.8446 ± 0.0038
zx-xy — zx-xy-yz 0.846 ± 0.0042
zx-yz — zx-xy-yz 0.843 ± 0.0037
zx-xy — yz-xy-zx 0.844 ± 0.0039
zx-xy — xy-yz-zx 0.844 ± 0.0041

Supplementary Table 7 presents the results of the abla-
tion study on plane order variants for the EfficientMorph-
23 model. The table demonstrates that the proposed model
achieves comparable accuracy regardless of the plane order.

Supplementary Table 8 highlights the evaluation of vari-
ous memory-efficient attention mechanisms applied to the

Table 8. Attention Type Ablation. Discuss about the different at-
tention types that are added on top of the proposed plane attention,
dice scores are evaluated on 35 segmented anatomies in OASIS
with stride = 4 and C=96 for the EfficientMorph-23 variant.Param
as Parameter of model in millions of parameters.

Attention Param Dice Score ↑
Plane 2.8 0.8458 ± 0.0137

Plane + Sparse [12] 2.8 0.843 ± 0.0040
Plane + Linformer [65] 4.69 0.848 ± 0.0035

Plane + Memory Efficient [48] 2.82 0.848 ± 0.005
Plane + Nystrom [70] 2.82 0.845 ± 0.0034

Plane + Flash [14] 2.82 0.845 ± 0.0042
Plane + Flash [14] (Stride= 2) 2.80 0.87 ± 0.0042

proposed plane attention. The results indicate that these
approaches yield performance comparable to the proposed
method, primarily because the tested mechanisms perform
optimally with larger token sizes. Notably, Plane + Flash
attention achieved the best performance when trained with
a stride of 2, outperforming the stride 4 configuration sup-
porting the claim.

6.5.1 IXI dataset Results

Table 9 presents the performance results on the IXI dataset.
Notably, ablation experiments reducing the embedding
dimensions (C=24) showed an improvement in perfor-
mance from 0.7317, surpassing TransMorph’s 0.7293 at
100 epochs. This also brought the model’s accuracy in line
with Fourier-Net-s while offering superior inference speed
compared to all baselines. While extended training beyond
100 epochs could potentially result in even higher accuracy,
this is left for future work.

Supplementary Figure 7 illustrates that EfficientMorph
variants generally outperform TransMorph during the ini-
tial training stages, though performance plateaus as training
progresses. Qualitative results in supplementary Figure 9
indicate that EfficientMorph produces segmentation results
comparable to TransMorph, with EfficientMorph perform-
ing similarly to the baseline for various substructures, as
depicted in supplementary Figure 8.



Figure 5. OASIS qualitative results. Comparison among the best, median, and worst output of TransMorph with the variants of the
proposed method. Here, EfficientMorph-23 and EfficientMorph-11 are the different variants with 2x2x2 stride size and 96 embedded
dimension; CGA means variants with cascaded group attention.

Figure 6. OASIS boxplot. Quantitative comparison of the proposed models with TransMorph showing dice scores for 19 anatomical
substructures.

Figure 7. Dice scores as a function of number of epochs(IXI).



Table 9. IXI Results. Mean average dice score and standard deviation are evaluated on 29 segmented anatomies in IXI. * indicates the
performance numbers taken from TransMorph and Fourier-Net; for all others, we ran these baselines on our system for fair comparison.
‘stride’ and ‘C’ are the strides and channel layer for initial embedding layer. ‘Multi-Add’ is the number of Multiply add operations needed
for a forward pass.

Dice Score ↑
Methods stride C Epochs Param(M) Val Test

SyN* - - - - - 0.645±0.152
NiftiReg* - - - - - 0.645±0.167

voxelMorph-1* [7] - - - 0.3 - 0.548±0.317
cycleMorph* [35] - - - - - 0.528±0.321
Fourier-Net-s [28] - - 200 1.05 0.729±0.024 0.730±0.025
Fourier-Net-s [28] - - 1000 1.05 0.735±0.026 0.736±0.027
Fourier-Net [28]* - - 1000 4.19 0.760±0.132

TransMorph-Tiny* [9] 4x4x4 6 500 0.24 0.545±0.180 0.543±0.180
TransMorph [9] 4x4x4 96 100 46.7 0.7293±0.029 0.7324±0.0314
TransMorph [9] 4x4x4 96 500 46.7 0.7405±0.0283 0.7408±0.0299

TransMorph-L [9]* 4x4x4 128 500 108.34 0.753 ±0.130 0.754±0.128
EfficientMorph-11 4x4x4 96 100 2.01 0.7233±0.0305 0.7224±0.0324
EfficientMorph-23 4x4x4 96 100 3.04 0.7291±0.0303 0.7298±0.0322
EfficientMorph-11 2x2x2 96 100 1.7 0.6739±0.0322 0.6749±0.0323
EfficientMorph-23 2x2x2 96 100 2.8 0.7159±0.0307 0.7174±0.0330
EfficientMorph-23 2x2x2 24 100 3.0 0.7312±0.0298 0.7317±0.0320

Figure 8. IXI boxplot. Quantitative comparison of the proposed models with TransMorph showing dice scores for 22 anatomical substruc-
tures.

Figure 9. IXI qualitative results. Comparison among the best, median, and worst output of TransMorph with the variants of the pro-
posed method. EfficientMorph-23 and EfficientMorph-11 are the different variants with 4x4x4 stride size and 96 embedded dimensions;
EfficientMorph-11(24) has 24 embedding dimensions.


