Supplementary
RayGauss: Volumetric Gaussian-Based Ray Casting
for Photorealistic Novel View Synthesis

1. Overview

In this supplementary material, we first provide techni-
cal details about our method: an explicit description of the
different basis functions tested and their influence on vari-
ous aspects of the algorithm, details about our OptiX imple-
mentation, and a description of optimization details. Next,
we address secondary features specific to our approach: the
ability to simultaneously cast rays from different viewpoints
compared to splatting and the possibilities enabled by the
OptiX API [11]. Finally, we discuss additional tests con-
ducted on the hyperparameters of our algorithm: the sam-
pling step At and the density threshold o.. We then com-
pare our method to state-of-the-art approaches attempting
to produce an antialiased scene representation. For this pur-
pose, we test our approach by adding brute force supersam-
pling to study its potential for antialiasing.

2. Description of the different basis functions
and their intersection

We provide more details here on the different tested basis
functions and the resulting treatments. Our implementation
is flexible and allows easy modification of the basis func-
tion used. Such modification impacts the following aspects
of the code: construction of the Bounding Volume Hierar-
chy, intersection program, and weights evaluation for each
sample, as explained below.

2.1. Explicit expressions of the studied basis func-
tions

As explained in the main article, we limit ourselves to
the study of decreasing radial and elliptical basis functions,
which can be expressed depending on r(x) = L}’;H) in
the radial case or r(x) = dps(x, 1) in the elliptical case.
Here, R € R can be interpreted as a shape parameter, ds
denotes the Euclidean distance in R3, and dj/(x,u) =
V/(x — 0)TE~1(x — ) represents the Mahalanobis dis-
tance associated with the covariance matrix > and mean
position .

Also, we have studied two types of basis functions: those

with local, or more precisely compact, support that vanish
for r > 1, and those with global support. We describe below
these different functions.

Functions with local/compact support: The studied
functions with compact support are as follows:

* The Bump function is defined as:
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¢ Wendland functions denote a class of functions, and
here we use one of the most commonly employed:
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It can be noted that the Bump function has been slightly
modified compared to its usual expression, as it has been
multiplied by e!, so that ¢pm,(0) = 1, which corresponds
to the behavior of the other basis functions studied and fa-
cilitates experiments.

Functions with global support: The studied functions
with global support are as follows:

» The inverse multiquadric function:
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* The inverse quadratic function:
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¢ The Gaussian function:
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Also, the expression used to evaluate weights for each
sample corresponds to one of the expressions given above,
depending on the tested case. In addition, as specified in
the main article, global support functions are truncated to
consider only their value within a domain restricted by the
following condition:
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with ¢; the I-th basis function and o; the associated den-
sity parameter. This allows considering only functions with
a non-negligible contribution at a given point by setting a
sufficiently low threshold. Moreover, no domain truncation
is necessary for compactly supported functions, as they nat-
urally vanish outside a compact domain by their definition.

After modification, the support of these functions corre-
sponds to a solid sphere if the functions are radial or to a
solid ellipsoid if they are elliptical. Since elliptical func-
tions yield better results in our case, we will subsequently
explain only the case of ellipsoids (which is also a gen-
eralization of spheres). Additionally, the OptiX API we
use does not natively support intersection with ellipsoids
but allows for the definition of a custom intersection pro-
gram. This works by defining two aspects: the definition
of axis-aligned bounding boxes (AABBs) that encompass
each primitive and the definition of the custom primitive in-
tersection (ellipsoid in our case). Thus, for a given ray and
a given slab assimilated to a segment, we test the intersec-
tion of the segment with primitives in the following way:
OptiX first finds an intersection with the AABBs, and for
the intersected AABBEs, it executes the custom program de-
fined by us, calculating the intersection between a segment
and an ellipsoid. Furthermore, the ellipsoid depends on the
basis function used. So, as previously mentioned, the basis
function influences the construction of the BVH through the
provided AABBs and the custom intersection program. We
will discuss these two points below.

2.2. Ellipsoid definition for the basis function

To calculate the intersection of a ray with the support of
a basis function, we must first explicitly define its expres-
sion. In the case of truncated global functions, by using
equations 7 and 8, we derive that the support of the 1-th
truncated global function is the set of points satisfying the
condition:

du(r(x) = — €))

Also, since all tested global support basis functions are

invertible and decreasing, (bfl is decreasing, and:
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Here, since we are considering the elliptical case, we have:
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And thus (by the growth of the square function on RT):
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where we can recognize the equation of an ellipsoid.

The expression is simpler in the case of Ilo-
cally/compactly supported functions. Indeed, the tested
functions vanish starting from r = 1. Therefore, we can
deduce the equation of the ellipsoid in this case:

(x— )8 x— ) <1 (13)
2.3. Tightest axis-aligned bounding box definition

The OptiX API optimizes Ray-AABB intersection.
Also, our goal here is to build the BVH using the tightest
axis-aligned bounding boxes enclosing previous ellipsoids
to avoid unnecessary intersection calculations. In this ellip-
tical case, the resulting axis-aligned bounding box (AABB)
has a slightly complex expression. It is bounded by the fol-
lowing coordinates:

v =po £ \[32R | + 2RT, + 2R,

Y=y = \/E?ER%1 + 2R3, + 2R3, (14

2= p+ \[32RE, + 2R3, + 2R3 5.

where R; ; are the coordinates of the rotation matrix R as-
sociated with the ellipsoid as described in the main article.

Moreover, S = s - qﬁl_l (%z) in the case of truncated global

functions and § = s in the case of compactly supported
basis functions. Here, s refers to the diagonal of the scale
matrix S defined in the main paper.

In the radial case, this is straightforward as we take the

cube of side 2R¢>fl (g—l) centered on p in the case of trun-

cated global functions and the cube of side 2R centered on
4, in the case of compactly supported basis functions.

2.4. Custom intersection definition

To implement the intersection, we use the ellipsoid equa-
tions 12 and 13, depending on the basis function, and calcu-
late the intersection of the current segment with this ellip-
soid. In particular, we leverage the optimized Ray-Sphere
intersection introduced in [6] and adapted for the case of
ellipsoids.



3. Optix Raycasting

Here we describe the details of our RayCasting algo-
rithm implementation using the OptiX API. This API works
by allowing the definition of several custom programs that
define the behavior of the rendering pipeline. The different
programs of interest in our case are as follows:

* Ray Generation: This program is called first and is ex-
ecuted in parallel for each pixel, launching rays into
the BVH.

e Intersection: Defines the ray-primitive intersection
with our custom primitive, an ellipsoid in our case.

* Any-Hit: This program is called when the Intersection
program finds a new intersection along the ray, allow-
ing custom processing of the intersected primitives.

From these three programs, we can define our ray-
casting algorithm. In particular, the Ray Generation pro-
gram calculates the origin and direction of the ray associ-
ated with a given pixel, then a slab size corresponding to a
multiple of At is fixed. This slab size is the same for all
rays to maintain inter-ray coherence. In practice, in most
cases, we treat 8 samples per slab. Next, if a given ray inter-
sects the axis-aligned bounding box associated with the set
of primitives, then this ray intersects the scene. So we start
probing the space traversed by the ray, proceeding slab by
slab. For a given segment on the ray, we launch the traversal
of the BVH. The intersection program computes the inter-
section of the segment with ellipsoids in the scene. The
any-hit program collects the primitives intersecting the seg-
ment by storing their index in a large pre-allocated buffer.
In practice, the buffer size is set to store at most 512 or 1024
primitives depending on the scene, thus allowing us to have
more than enough primitives per buffer (between 512 and
1024 for 8 samples). This choice was made to ensure fast
code execution. Once the primitives contributing locally are
collected, we can calculate the value of o and ¢ for each of
the samples in the slab, then accumulate them in the form of
an intermediate color and transmittance of the ray. We can
then use the early termination strategy, which ends the cal-
culation when the current transmittance becomes lower than
a threshold: 7' < T,. When the threshold is low, this strat-
egy allows us to disregard the samples whose contribution
will be negligible compared to the overall color of the ray.
If early termination isn’t applied and we are still within the
bounds of the scene, we can then move to the next slab and
repeat the same process. We provide the ray generation and
any-hit programs for performing ray casting in algorithm 1
and 2. The intersection program is not described in detail as
it corresponds to the ellipsoid-segment intersection.

Algorithm 1 Any-Hit Program

Input: n,: number of intersected primitives, nmqe: Maximum

number of primitives, hitBuffer: buffer storing primitive indices,

ir: index of the current ray

Output: n,, hitBuffer

. 1p < optixGetPrimitiveIndex()

: hitBuffer[ir X Nmaz + Np| < ip

TNy np+1

if np > Nmao then
optixTerminateRay()

: end if

. optixIgnorelntersection()

> Current primitive index

> Terminate if max. primitives

> Continue Traversal

Algorithm 2 Ray Generation Program

Input: ir: index of the current ray, bboxmin: minimum bounds
of the bounding box, bbox mqz: maximum bounds of the bound-
ing box, At: step size, B: size of the buffer, T,: transmittance
threshold, hitBuffer: buffer storing primitive indices, P: global pa-
rameters (primitive parameters and ray colors)

Output: P: update parameters

1: 0,d + ComputeRay(ir) > Ray origin, direction

2: to,t1 < IntersectBBox(o, d, bboxmin, bboTmaz)
3: AS+ At x B > Slab size
4: T+ 1.0 > Ray transmittance
5: Cr «+ (0.0,0.0,0.0) > Ray color
6: if to < ¢ then > Check if ray intersects bounding box
7: ts < to > Current slab distance along the ray
8: while ts < t; and T' > T¢ do
9: np <0 > Number of primitives
10: tmin.s < max(to,ts)

11: tmaz.S min(tl,ts + AS)

12: > Collect the intersected primitives

13: Traversal (hitBuffer, o, d, tmin_s, tmaz_s, Np)

14: if n, == 0 then

15: ts < ts + AS

16: continue

17: end if

18: densityBuffer < (0.0)”

19: colorBuffer < (0.0, 0.0,0.0)%

20: > Update ray color and density

21: UpdateRay (i g, np, At, ts, 0, d, densityBuffer,

colorBuffer, Cr, T, P)

22: ts +— ts + AS

23: end while

24: end if

25: Pray_colors[ir] < Cr

4. Optimization details

This section provides further details on the optimization
parameters used in our experiments. We use the Adam gra-
dient descent optimization algorithm [8]. We recall that
the parameters optimized by our approaches are as follows:
P = {(61,¢,m,qi,8) | L = 1,..., N} where &, is the
density parameter of the [-th primitive, ¢; summarizes the



colorimetric parameters: lobe )\; ; , lobe direction p; ;, co-
efficients k; ;, for the j — th Spherical Gaussian and coef-
ficients ¢; j,, for Spherical Harmonic of degree j and order
m, while p;, q;, and s; are the mean position, quaternion,
and scale parameter used to evaluate the basis function of
the [-th primitive. The initial parameters are obtained from
a point cloud created by Structure-From-Motion methods
such as Colmap [12].

We will now describe the main parameters of our op-
timization, starting with the learning rates. In the con-
text of evaluations on the Blender dataset, we employed a
learning rate for density with exponential decay, starting at
5x 107! and decreasing to 3 x 10~2 over 30,000 iterations.
The learning rates for other parameters were set as follows:
1.0 x 1073 for constant color parameters (RGB), 2.6 x 10~*
for Spherical Harmonics coefficients, 3.6 x 10~4 for Spher-
ical Gaussians coefficients, 4.5 x 10~2 for lobe sharpness,
3.0 x 1073 for lobe direction, 1.2 x 10~2 for scale pa-
rameters, 2.2 x 10~% for quaternions, and a learning rate
with exponential decay starting from 1.7 x 10~° and reach-
ing 1.0 x 1075 after 30,000 iterations for mean positions.
We optimize the scene using a white background to place
ourselves in evaluation conditions like other state-of-the-
art methods. In the case of the Mip-NeRF360 dataset, we
use similar learning rates except for the density, for which
we use a learning rate with exponential decay starting from
5 x 107! and reaching 1 x 10~* in 30,000 iterations. This
allows us to accelerate the beginning of the optimization,
particularly for outdoor scenes with a large number of Gaus-
sians. Furthermore, we train with a black background on
this dataset to place ourselves in evaluation conditions sim-
ilar to Gaussian Splatting and current state-of-the-art meth-

ods [7] [15].

More generally, we optimize the scene by backpropaga-
tion, with the optimization taking 30,000 iterations (1 im-
age per iteration). Quaternions are renormalized after each
optimization step to maintain a valid rotation matrix rep-
resentation. The process of Adaptive Gaussian Control is
similar to that used in 3D Gaussian Splatting [7], period-
ically increasing, every igens;fy iterations, the number of
Gaussians in the scene using a heuristic based on the condi-
tion VL,, > VL., where VL, denotes the gradient on the
mean position of the basis functions and V L. the threshold
from which densification is applied. In our case, we den-
sify every 500 iterations for Mip-NeRF360 and 300 itera-
tions for Blender dataset, starting from the 500th iteration
up to the 15,000th iteration, and we set VL. = 0.00002
for the Mip-NeRF 360 dataset and VL, = 0.00004 for the
Blender dataset. Furthermore, we remove primitives whose
density parameter ¢ is below a threshold, set to 0.1 for our
experiments on the Blender dataset and 0.01 on the Mip-
NeRF 360 dataset. Finally, as described in the main pa-
per, we gradually unlock the colorimetric parameters from

the lowest frequency representation to the potentially higher
frequency one: harmonics of degree 0, 1, 2, and finally, 7
spherical Gaussians, resulting in 16 functions to represent
the color of a primitive. The unlocking of these parameters
occurs every 1000 iterations. We can specify here that the
spherical harmonic and spherical gaussian coefficients, as
well as the lobe sharpness, are initialized to zero, while the
lobe axes are randomly initialized on the unit sphere and
constrained to it during optimization. Also, one can refer
to Algorithm 3 to gain a broader view of the optimization
process.

Algorithm 3 RayGauss Scene Optimization

Input: ([i)ijil:N training images, tmaq, maximum number of

iterations, V L, gradient threshold for densification, o, density

threshold for prunning

Qutput: optimized primitive parameters P
1: (Vi)X, P+ SEM((I;)~.;) © Camera, Sparse Point Cloud
2: P + InitPrim(P) > Initialize primitive parameters
3: T « InitBVH(P) > Bounding Volume Hierarchy
4: 1+ 0

5: while ¢ < iymq, do

6: V, I <— SampleTrainView()

7 I + RayCast(V, P,T)

8: L « Loss(1, 1)

9: P < AdamOptim(V L)

10: for (64, ¢, i, qi,s1) in P do

11: if IsAdaptControllter(z) then
12: if VL, > VL. then

13: P + CloneSplit((61, €1, 1, qi, st))
14: end if

15: if 5; < oc then

16: RemovePrimitive()

17: end if

18: end if

19: if IsUnlocklter(z) then

20: ¢ < UnlockColorSHSG(¢)
21: end if

22: end for
23: T < UpdateBVH(T, P)
24: end while

Furthermore, it should be noted that the number of pa-
rameters in our representation is 87 Np, where Np is the
number of primitives. Specifically, we have the follow-
ing parameter counts: 3 for the mean position x, 3 for the
scale parameter s, 4 for the quaternions q, 1 for the den-
sity parameter &, 27 for spherical harmonic coefficients, 21
for spherical Gaussian coefficients, 7 for lobe parameters,
and 21 for lobe direction parameters. Moreover, as men-
tioned earlier, our current implementation requires allocat-
ing a buffer of size Np,qq,p X Nyqy, Where Ny o, p is the
maximum number of primitives per ray per slab allowed,
and N,.q, the number of rays launched. Therefore, the limit-
ing factor of our implementation in terms of memory mainly



depends on the allocation of these data.

5. Uncorrelated ray casting

One of the advantages of ray casting compared to splat-
ting lies in the fact that multiple independent rays from
different cameras can be rendered simultaneously. In ray
casting, which is an image-order rendering method, rays
are treated independently and can originate from various
viewpoints. In contrast, splatting, which is an object-order
method, projects primitives onto the image plane and then
sorts them. This primitive processing benefits splatting
when rendering an entire image, as it allows for quickly
computing the color of each pixel by summing the contribu-
tions of primitives projected onto it. However, this approach
loses its advantage when considering the color of a single
ray, for instance. Thus, in practice, several applications can
be considered based on this observation: training is done
iteratively on individual images in 3D Gaussian Splatting,
whereas our training can easily use batches of rays from dif-
ferent images. Furthermore, supervision may require cast-
ing independent rays if the supervision data is sparse, for in-
stance, if we want to supervise ray depth using a point cloud
representing the surface as supervision data [5]. In this case,
our approach is more suitable than the splatting algorithm
because it can natively handle uncorrelated rays from dif-
ferent viewpoints. Another application would be adaptive
supersampling, which consists of successively casting rays
in the image plane to reduce rendering artifacts by focusing
on the most challenging regions. This type of approach is
more suited to ray casting as improving the rendering qual-
ity may only require casting a few additional rays. These
last two applications are beyond the scope of this article.
Additionally, tests were conducted by training with batches
of rays. However, training in batches does not allow for
the use of supervision functions such as structural similarity
(SSIM), and in practice, we obtained poorer results com-
pared to training image by image. However, conducting
more experiments to explore this aspect further would be
interesting.

6. OptiX API applications

Our method is supported by Nvidia OptiX, a framework
designed initially for GPU ray tracing. Its flexible API
allows for efficiently combining different types of prim-
itives, associated intersections, and rendering algorithms.
Consequently, our approach has the potential to be com-
bined with more traditional rendering methods using stan-
dard primitives, such as meshes rendered by classic ray trac-
ing, through the API used. Thus, our approach could be in-
tegrated into complex environments mixing different types
of primitives that can be rendered using the single OptiX
APL

7. Analysis of At and o,

In this section, we present a study of the influence of
two parameters on the final rendering quality, training and
rendering times:

« At is the distance between two samples along a ray

e g. corresponds both to the density under which a
Gaussian is removed but also to the limits of the Gaus-
sians for the calculation of intersections

Tab. 1 studies the influence of the parameter At on the
Blender dataset. The results come from training on the
Blender Dataset with PSNR averaged over the 8 scenes
of this synthetic dataset. The gray line corresponds to the
choice of the parameter At for all other experiments (main
article and supplementary). We observe that increasing the
space At makes it possible to speed up training but also
rendering times at the cost of a reduction in graphic quality.

At ‘ PSNR 1T Training Time Rendering Time
0.00125 | 34.53 46 min 17.4 FPS
0.0025 34.53 32 min 25.8 FPS
0.005 34.52 24 min 42.8 FPS
0.01 33.90 20 min 50.1 FPS

Table 1. Study of the influence of the parameter At on the
Blender dataset. At is the distance between two samples along a
ray. Values are averaged per scene. In gray, the parameter used in
other experiments. Rendering time is for 800x800 pixels image.

Tab. 2 studies the influence of the parameter o on the
Blender dataset. The results come from training on the
Blender Dataset with PSNR averaged over the 8 scenes of
this synthetic dataset. We can see that increasing o, speeds
up the training and rendering times of the method. On
the contrary, by decreasing o, we increase the size of the
Gaussians when calculating the intersections with the rays,
which increases the training and rendering times, while im-
proving the quality of rendering. The gray line also corre-
sponds to the choice of the parameter o, for all other experi-
ments on Blender dataset (main article and supplementary),
for Mip-NeRF360, we use o = 0.01.

Oe¢ ‘ PSNR 1T Training Time per scene Rendering Time

1.0 34.52 26 min 29.4 FPS
0.1 34.53 32 min 25.8 FPS
0.01 34.54 35 min 23.5 FPS

Table 2. Study of the influence of the parameter o. on the
Blender dataset. 0. determines the limit of Gaussians for calcu-
lating intersections. Values are average per scene. In gray, the pa-
rameter used in other experiments. Rendering time is for 800x800
pixels image.



8. RayGauss and Anti-aliasing

Like NeRF [9], Instant-NGP [10] and Gaussian Splat-
ting [15], RayGauss is a method that does not have an anti-
aliasing mechanism, unlike the Mip-NeRF [1] and Mip-
Splatting [15] methods.

To study the level of aliasing of RayGauss, we fol-
lowed the protocol defined by Mip-Splatting [15] Single-
Scale vs Multi-Scale with the Blender dataset, which con-
sists of training the methods with full resolution images
(800x800 pixels) then testing the rendered at different res-
olutions (1, 1/2, 1/4, 1/8) to mimic zoom-out effects. We
can see the results with the PSNR metric on Tab. 3. Ray-
Gauss manages to maintain good rendering quality on all
scales compared to Gaussian Splatting (due to rasterization
and dilation of Gaussians in 2D) and remains competitive
compared to methods with anti-aliasing (Mip-NeRF [1] and
Mip-Splatting [15]).

Full Res. 1/2Res. 1!/4Res. 1l/gRes. | Avg.
Gaussian Splatting [15] 33.33 26.95 21.38 17.69 24.84
NeRF [9] 31.48 3243 30.29 26.70 | 30.23
Instant-NGP [10] 33.09 33.00 29.84 26.33 | 30.57
MipNeRF [ 1] 33.08 33.31 30.91 2797 | 31.31
Mip-Splatting [15] 33.36 34.00 31.85 28.67 | 31.97
RayGauss (ours) 34.53 33,90 30,01 26,36 31.20

Table 3. PSNR score for Single-scale Training and Multi-scale
Testing on the Blender dataset. All methods are trained on full-
resolution images (800x800 pixels) and evaluated at four differ-
ent resolutions (800x800, 400x400, 200x200 and 100x100 pixels),
lower resolutions simulating zoom-out effects.

A brute-force anti-aliasing method consists in multi-
plying the number of rays per pixel. The basic Ray-
Gauss method launches a single ray through the center of
each pixel for training and rendering. We studied the ef-
fect of casting 4 rays per pixel for training and render-
ing, a variant called RayGauss4x. Training and rendering
times are approximately 3 times longer than the basic Ray-
Gauss method. We then calculated the PSNR scores on
Blender with several scales (Tab. 4) and compared it with
the Mip-Splatting method. To be fair, we also increased
the rasterization resolution of Mip-splatting by 4 at each
scale (during training and rendering), a variant called Mip-
Splattingdx. In this configuration, RayGauss4x is supe-
rior to Mip-Splatting4x on almost all scales on the Blender
dataset.

9. Detailed results

Tab. 5 and Tab. 6 show the detailed results of the main
paper with metrics PSNR, SSIM, and LPIPS on the Blender
and Mip-NeRF 360 datasets. Some methods have no avail-
able code, so we were not able to report information about
SSIM and LPIPS (for example, for PointNeRF++).

| FullRes. 1/2Res. 1/aRes. 1/sRes. | Avg.

Mip-Splatting4x [15]* 33.51 35.23 35.71 33.92 | 34.59

RayGauss4x (ours) 34.60 36.43 36.02 33.11 35.04

Table 4. PSNR score for Single-scale Training and Multi-
scale Testing on the Blender dataset with 4x Super Sampling.
Methods are trained on full-resolution images (800x800 pixels)
with 4x supersampling and evaluated at four different resolutions
(800x800, 400x400, 200x200 and 100x100 pixels) with 4x super-
sampling, lower resolutions simulating zoom-out effects.

All methods with an * have been retrained using the
available code:

e NeRF and Instant-NGP with their respective
model wusing the nefstudio framework v1.1.3:
https : / / github . com / nerfstudio -
project/nerfstudio

e Gaussian Splatting: https: //github . com/
graphdeco-inria/gaussian-splatting

e Mip-Splatting: https : / / github . com /
autonomousvision/mip-splatting
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PSNR 1
Chair Drums Ficus Hotdog Lego Materials Mic  Ship | Avg.
NeRF [9] 34.17 25.08 3039 36.82 3331 30.03 3478 29.30 | 31.74
Zip-NeRF [3] 3484 2584 3390 37.14 3484 31.66 35.15 31.38 | 33.10
Instant-NGP [10] 35.00 26.02 3351 3740 36.39 29.78 36.22  31.10 | 33.18
Mip-NeRF360 [2] 3565 2560 33.19 3771 36.10 29.90 36.52 31.26 | 33.24
Point-NeRF [14] 3540 26.06 | 36.13 3730 35.04 29.61 3595 30.97 | 33.30
Gaussian Splatting [7]* | 35.85 2622 35.00 37.81 35.87 30.00 3540 30.95 | 33.39
Mip-Splatting [15]* 36.03 2629 3533 3798  36.03 30.29 35.63 30.50 | 33.51
PointNeRF++ [13] 36.32  26.11 3443 3745 36.75 30.32 36.85 31.34 | 33.70
NeuRBF [4]* 36.54 2638 3501 @ 3844 37.35 34.12 36.16 31.73 | 3447
RayGauss (ours) 3720 27.14 3511 3830 37.10 31.36 38.11 31.95 | 34.53
SSIM 1
Chair Drums Ficus Hotdog Lego Materials Mic Ship | Avg.
NeRF [9] 0975 0925 0967 0979 0.968 0.953 0.987 0.869 | 0.953
Zip-NeRF [3] 0983 0944 0985 0984  0.980 0.969 0.991 | 0.929 | 0.971
Instant-NGP [10] - - - - - - - - -
Mip-NeRF360 [2] 0983 0931 0979 0982  0.980 0.949 0.991 0.893 | 0.961
Point-NeRF [14] 0984 0935 0987 0982 0.978 0.948 0.990 0.892 | 0.962
Gaussian Splatting [7]* | 0.988 0.955 0988 0.986 0.983 0.960 0.992 0.893 | 0.968
Mip-Splatting [15]* 0988 0956 0988 0987 0.984 0.962 0.992 0.900 | 0.970
Point-NeRF++ [13] - - - - - - - - -
NeuRBF [4]* 0988 0944 0987 0987  0.986 0.979 0.992 0.925 | 0.974
RayGauss (ours) 0990 0960 0988 0.988  0.986 0.969 0.995 0914 | 0.974
LPIPS |
Chair Drums Ficus Hotdog Lego Materials Mic  Ship | Avg.
NeRF [9] 0.026 0.071 0.032 0.030 0.031 0.047 0.012 0.150 | 0.050
Zip-NeRF [3] 0.017 0.050 0.015 0.020 0.019 0.032 0.007 0.091 | 0.031
Instant-NGP [10] - - - - - - - - -
Mip-NeRF360 [2] 0.018 0.069 0.022 0.024 0.018 0.053 0.011 0.119 | 0.042
Point-NeRF [14] 0.023 0.078 0.022 0.037 0.024 0.072 0.014 0.124 | 0.049
Gaussian Splatting [7]* | 0.011 0.037 0.011 0.017 0.015 0.034 0.006 0.118 | 0.031
Mip-Splatting [15]* 0.012 0.037 0.011 0.018 0.015 0.033 0.005 0.107 | 0.030
Point-NeRF++ [13] - - - - - - - - -
NeuRBF [4]* 0.016 0.061 0.016 0.021 0.015 0.032 0.008 0.114 | 0.035
RayGauss (ours) 0.009 0.030 0.011 0.015 0.012 0.026 0.004 0.088 | 0.024

Table 5. PSNR, SSIM and LPIPS (with VGG network) scores on the Blender dataset. All methods are trained on the train set with
full-resolution images (800x800 pixels) and evaluated on the test set with full-resolution images (800x800 pixels).
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PSNR 1
bonsai counter kitchen room | bicycle flowers garden stump treehill | Avg.
NeRF [9]* 22.10 2234 22.00 2446 | 1935 19.49 2270 2143  21.02 | 21.65
Instant-NGP [10]* 27.04 2425 2344 2730 | 23.69 2141 25.64 2256 2222 | 24.17
Gaussian Splatting [7]* | 33.42  30.21 3340 3295 | 27.33 2371 2958 27.78 24.00 | 29.15
Mip-Splatting [15]* 33.44 = 30.43 3430 3330 | 27.62 2379 29.78 | 27.89 2425 | 29.42
Zip-NeRF [3]* 36.10 30.13 3285 3420 | 28.10 2425 3024 2778 2572 | 29.93
RayGauss (ours) 3522 31.79 3543 3295 | 2721 2353 2991 27.13 2426 | 29.71
SSIM 1
bonsai counter kitchen room | bicycle flowers garden stump treehill | Avg.
NeRF [9]* 0.652  0.690 0.658 0.815 | 0.371 0462  0.653 0482 0.506 | 0.588
Instant-NGP [10]* 0923  0.769 0.736 0.920 | 0.658 0.604  0.829 0.563 0.611 | 0.735
Gaussian Splatting [7]* | 0.970  0.942 0972 0963 | 0.856 0.730 0924 0.833 0.734 | 0.880
Mip-Splatting [15]* 0971  0.945 0976  0.966 | 0.871 0.752 0931 0.845 0.744 | 0.889
Zip-NeRF [3]* 0978  0.932 0951 0.965 | 0.865 0.754 0918 0.829 = 0.769 | 0.885
RayGauss (ours) 0978  0.958 0976 0971 | 0.859 0.742 0929 0.810 0.748 | 0.886
LPIPS |
bonsai counter kitchen room | bicycle flowers garden stump treehill | Avg.
NeRF [9]* 0.127  0.217 0.207 0.119 | 0360 0320 0.161 0.326 0.387 | 0.247
Instant-NGP [10]* 0.076  0.207 0.199  0.094 | 0.315 0.308  0.143 0.212 0.389 | 0.216
Gaussian Splatting [7]* | 0.037  0.062 0.029 0.052 | 0.121 0.238  0.056 0.142 0.230 | 0.107
Mip-Splatting [15]* 0.032  0.057 0.027 0.045 | 0.103 0.189 | 0.050 0.130 0.197 | 0.092
Zip-NeRF [3]* 0.021  0.059 0.034 0.037 | 0.113 0.168  0.061 0.145 = 0.158 | 0.088
RayGauss (ours) 0.024  0.042 0.024 0.036 | 0.110 0.183 0.051 0.156 0.187 | 0.090

Table 6. PSNR, SSIM and LPIPS (with VGG network) scores on the Mip-NeRF 360 dataset. All methods are trained and tested on
downsampled images by a factor of 8.
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