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1. Ablation Study
We perform an ablation study, evaluating the influence of different elements on the performance. We use Rebuffi et al. [10]

AT model WRN28-10 trained on CIFAR10 and threat model ℓ∞ = 8/255. We evaluate the performance over clean examples
and 4 attacks: (ℓ∞, ϵ = 8/255), (ℓ∞, ϵ = 16/255), (ℓ2, ϵ = 0.5), (ℓ2, ϵ = 1.0). First, we investigate the necessity of the
AT model. Next, we check the impact of the distance metric by which we make the prediction. Moreover, we check the
influence of the transformation hyper-parameters α, γ, and transformation steps M . Finally, we check different k values for
CODIPTop-k.

PAG Property Our method is based on image transformations, and we show the effectiveness of the proposed transfor-
mation through extensive evaluation. We claim that the transformation is possible due to the PAG property, which is known
to be possessed by AT classifiers [4, 5, 11, 13]. To validate this claim we use our method on WRN28-10 classifier that was
trained on clean images. We show that the model enhancement is limited compared to the results achieved by AT models.

Distance Metric Our method operates through two phases: transformation and distance measurement, where the distance
is used for the classification decision. CODIP operates through ℓ2 norm, however, there are other reasonable choices such as
LPIPS [16], which measures the perceptual similarity between two images. We demonstrate that ℓ2 better suit our method.

Hyper-Parameters We investigate the influence of each hyper-parameter, α, γ,M , of CODIP over the model performance.
First, we look at different values of α which determines the transformation step size. The proposed transformation is per-
formed via iterative gradient updates, where each step is of size α. Hence, the step size holds an important key. While small
steps might better follow the function, the progress is slower since it requires additional steps. On the other hand a large step
size, although much faster, might lead to insufficient results. Our results in Tab. 1 support the theory, as a large step size leads
to bad results. While small step size, with additional transformation steps, leads to equally good performance.

Next, we examine the influence of γ on the performance. This parameter regulates the transformation distance. Small
values allow the transformation to change the image, while large values restrict the transformation to be minimal.

Finally, we examine the number of transformation steps. When the number of steps is small, the transformation can not
reach its objective. For a sufficient number of steps, we get good results, even when we have more than the minimal required
number of steps.

Top-k We investigate the influence of different k values on CODIPTop-k . For small values, our method performance is
getting closer to the AT classifier performances as we rely on its predictions. When we increase k, we rely more on the
transformation performance, which leads to better robustness.
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Table 1. Ablation Study An ablation over (a) The necessity of the AT model, (b) different distance metrics, (c) different hyper-parameters
values, and (d) different k values.

AT Distance Transformation Steps
M

α γ Top-k Clean
Attack

L∞ L2

8/255 16/255 0.5 1.0

✗
− − − − − 95.26% 00.00% 00.00% 00.00% 00.00%
ℓ2 30 0.05 300 ✗ 93.04% 01.11% 01.12% 01.24% 01.10%

✓
LPIPS [16] 30 1.5 400

✗
80.97% 66.49% 33.54% 74.73% 59.25%

ℓ2 0.1 300 84.86% 66.96% 35.15% 74.84% 53.32%

✓ ℓ2

100 0.05

300 ✗

84.86% 66.91% 35.02% 74.84% 53.50%

30

0.05 82.96% 65.40% 33.29% 74.14% 52.74%
0.1 84.86% 66.96% 35.15% 74.84% 53.32%
0.5 82.14% 67.85% 39.11% 73.32% 52.25%
1.0 73.78% 63.78% 32.39% 68.52% 47.10%

✓ ℓ2 30 0.1

10

✗

34.01% 33.84% 29.76% 35.29% 41.65%
100 81.33% 67.13% 38.47% 74.02% 57.05%
300 84.86% 66.96% 35.15% 74.84% 53.32%
500 84.58% 66.08% 32.78% 73.94% 49.42%

1000 79.47% 63.63% 29.80% 69.46% 42.41%

✓ ℓ2

10

0.1 300 ✗

70.28% 61.67% 29.66% 69.32% 49.21%
30 84.86% 66.96% 35.15% 74.84% 53.32%
50 84.87% 66.98% 35.02% 74.76% 53.19%

100 84.88% 67.01% 35.13% 74.85% 53.34%

✓ ℓ2 30 0.1 300

2 86.37% 66.45% 32.70% 73.98% 49.67%
5 85.79% 67.12% 34.72% 75.14% 53.30%
7 85.63% 67.12% 34.97% 75.12% 53.55%
9 85.21% 66.97% 34.72% 74.91% 53.31%



2. Qualitative Results
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Figure 1. Class-Conditioned Transformation Depiction of class-conditioned transformations of clean images from ImageNet towards
true class, similar class, and dissimilar class. These transformations performed using CODIP, and the ℓ2 distance between the clean image
and the transformed images is noted below the target class name.

We perform a qualitative experiment in which we compare the transformation’s visualization towards different classes.
In Fig. 1 we demonstrate that the transformation towards the true class does not change the image appearance much, while
transforming to another class does. The transformation to other classes changes the image considerably, especially towards
classes that are not semantically similar to the true class, which supports the assumption underlying our method.



3. White-Box Attack

Table 2. White-Box Attack An white-box attack evaluation of over CIFAR10 dataset. We compare ‘Base’, which is the AT classifier, to
CODIPTop-k, using PGD attack [9].

Attack
L∞ L2AT Method Trained Threat

Model Architecture Test-Time
Method Clean

8/255 16/255 0.5 1.0

Rebuffi et al. [10] L∞, ϵ = 8/255 WRN28-10 Base 87.33% 64.40% 33.60% 70.39% 45.78%
CODIPTop-k 84.38% 73.13% 62.38% 79.63% 74.64%

Throughout this work, we followed the common practice [7,8,14], and evaluated the performance with an attack that is not
exposed to the whole defense, but to the classifier alone. We perform such an attack since attacking such an iterative defense,
with hundreds of steps, is computationally challenging. Yet, there is no empirical evidence that these defenses remain strong
when attacking them with a white-box attack.

To this end, we evaluate our method with a white-box attack in Tab. 2, evaluating the robustness of CODIPTop-k under
PGD* [9]. We use the AT method Rebuffi et al. [10] and compare the ‘Base’ defense to CODIPTop-k. As presented, our
method improves the base model, by 9% and up to 29% for seen and unseen attacks respectively.

We use the PGD [9] attack that operates through 20 update steps, and we use four threat models, specified In Tab. 3. We
evaluate the ‘Base’ model, which is the AT model without additional test-time defense, and our method CODIPTop-k.

Applying a white-box attack to such an iterative defense is computationally challenging, as we need to keep in memory
all of the transformation steps for all of the target classes. This leads to a memory consumption that grows linearly with
the number of transformation steps M and the number of target classes N . To overcome this difficulty, even at the cost of
decreasing the robust accuracy, we use CODIPTop-k with k = 5 and M = 20 transformation steps. Additionally, we set the
hyper-parameters γ = 300 and α = 0.3.

*We follow the implementation of https://github.com/MadryLab/robustness



4. Top-k Attack
CODIPTop-k is our efficient method that selects the Top-k predictions from the classifier. This approach speeds up pro-

cessing but might be vulnerable to adaptive attacks that exploit this specific mechanism, such as the Top-k attack aimed at
excluding the true class from the classifier’s Top-k predictions. Typical attacks like PGD [9] focus on reducing the proba-
bility of the correct class as much as possible, which can sometimes result in outcomes similar to a Top-k attack. However,
achieving this is not their explicit design.

To address this, we introduce two additional adaptive attacks specifically designed to exploit the Top-k vulnerability. The
first, Top PGD Out (TPO), performs targeted PGD by iteratively sampling a class ranked outside of the Top-k predictions
and attacking towards it. The second, Top PGD In Out (TPIO), extends TPO by also removing the probability of the correct
class entirely from the model’s predictions, further intensifying the attack’s focus on reducing Top-k accuracy. In addition
to these attacks, the RCE attack, proposed by Zhang et al. [15], is specifically designed to remove the correct class from the
Top-k predictions by using normalized cross-entropy loss to update logits in the direction of maximizing the rank distance.
This makes RCE a suitable baseline for our evaluation alongside TPO and TPIO.

In Tab. 3, we compare the RCE attack, TPO, and TPIO to the PGD attack, specifically evaluating their effectiveness as
Top-k attacks by assessing the mean accuracy of the correct class appearing among the Top-k predictions, rather than general
model accuracy. This distinction is crucial, as the reported values reflect Top-k accuracy, not the standard accuracy of the
classifier in predicting the most likely class (Top-1 accuracy).

For example, the model by Rebuffi [10] under PGD achieves a 99.05% Top-80 accuracy, meaning that even under a PGD
attack, the true class has a 99.05% likelihood of being among the top 80 predictions of the classifier. Our results demonstrate
that for k=1, the PGD attack more effectively reduces Top-1 accuracy, achieving a lower Top-1 accuracy compared to the
RCE, TPO, and TPIO attacks. For higher k values, RCE perform better, evidenced by slightly lower Top-k accuracy.

We want to emphasize that, despite using standard attacks for all experiments involving CODIPTop-k, rather than special-
ized Top-k attacks, our results are consistently reliable. We acknowledge the potential risk that a standard attack may not
fully exploit the Top-k vulnerability. However, our findings clearly demonstrate that even adaptive attacks such as RCE,
TPO, and TPIO, specifically designed to target Top-k vulnerabilities, fail to undermine our defense.

Table 3. Top-k Attack Analysis A comparison of Top-k performance under a few attacks, PGD [9], RCE [15] TPO and TPIO, evaluated
on CIFAR100 dataset. Each AT model is attacked using two attacks, and the Top-k accuracy is presented for different k values.

Top-kMethod Trained Threat
Model Architecture Attack

Threat-Model Attack Method 1 5 10 20 30 40 60 80

Rebuffi et al. [10] L∞, ϵ = 8/255 WRN28-10 L∞, ϵ = 8/255

PGD [9] 36.18% 64.66% 74.23% 84.44% 89.76% 93.09% 97.40% 99.29%
RCE [15] 39.12% 64.48% 73.77% 83.52% 89.02% 92.22% 96.95% 99.05%
TPO 61.71% 84.18% 90.63% 95.43% 97.22% 98.43% 99.46% 99.84%
TPIO 38.56% 65.10% 74.44% 84.20% 89.61% 92.62% 97.19% 99.07%

Gowal et al. [6] L∞, ϵ = 8/255 WRN70-16 L∞, ϵ = 8/255

PGD [9] 40.62% 69.48% 78.05% 86.30% 91.08% 93.86% 97.30% 98.94%
RCE [15] 43.75% 68.47% 76.73% 84.95% 89.87% 92.81% 96.62% 98.62%
TPO 61.65% 84.38% 90.64% 95.50% 97.29% 98.53% 99.47% 99.85%
TPIO 43.73% 68.97% 77.47% 85.58% 90.52% 93.40% 96.99% 98.73%



5. Experimental Details

Table 4. CODIP Parameters The parameters used for the main results presented in the paper.

Dataset Method Architecture Trained Threat Model α γ

CIFAR10

Madry et al. [9] RN50 L2, ϵ = 0.5 1.5 200
Rebuffi et al. [10] WRN28-10 L2, ϵ = 0.5 0.5 400
Rebuffi et al. [10] WRN28-10 L∞, ϵ = 8/255 0.1 300
Gowal et al. [6] WRN70-16 L∞, ϵ = 8/255 0.3 300
Vanila WRN28-10 - 0.05 300

CIFAR100

Rebuffi et al. [10] WRN28-10 L∞, ϵ = 8/255 0.1 300
Rebuffi et al. [10] WRN28-10 L∞, ϵ = 8/255 0.1 300
Gowal et al. [6] WRN70-16 L∞, ϵ = 8/255 0.1 100
Gowal et al. [6] WRN70-16 L∞, ϵ = 8/255 0.1 100

ImageNet

Madry et al. [9] RN50 L2, ϵ = 3.0 6.0 5500
Salman et al. [12] WRN50-2 L2, ϵ = 3.0 6.0 3000
Madry et al. [9] RN50 L∞, ϵ = 4/255 1.0 6000
Salman et al. [12] WRN50-2 L∞, ϵ = 4/255 1.0 3000
Debenedetti et al. [3] XCiT-S L∞, ϵ = 8/255 0.5 2500
Debenedetti et al. [3] XCiT-M L∞, ϵ = 8/255 0.25 3000

Flowers Debenedetti et al. [3] XCiT-S L∞, ϵ = 8/255 1.5 500

Table 5. CODIP Parameters The parameters used for the results presented in the black-box experiments.

Dataset Method Architecture Trained Threat Model α γ

Imagenet Salman et al. [12] WRN50-2 L2, ϵ = 3.0 3.0 10000
Salman et al. [12] WRN50-2 L∞, ϵ = 4/255 0.1 15000

5.1. Randomized Smoothing

Randomized Smoothing [1] requires that the robust classifier be trained with Gaussian noise augmentations to be effective
at test-time. This requirement is documented in [1] and demonstrated by CIFAR-10 results using AT [9] RN50. Despite
its limitations, we chose to incorporate this method by selecting a small random noise value, σ = 0.05, as larger values
significantly degrade clean accuracy. Additionally, we attacked this model using AutoAttack [2] (random version), applying
10 augmentations per image to adhere to memory constraints.



6. Explain Top-k
The Top-k version of CODIP sometimes outperforms the full CODIP by focusing on the most likely classes, thereby

reducing the influence of less relevant or noisy class transformations. By concentrating on a smaller set of high-confidence
predictions, the Top-k version enhances accuracy by avoiding potential noise from less likely classes. For instance, in Fig. 2,
we show an image of a tulip (from CIFAR-100). CODIP initially predicts Oak tree followed by Tulip. However, by applying
the Top-k filter, Oak tree is excluded, allowing Tulip to be correctly selected. Similarly, for a television image, CODIP
might predict Palm tree followed by Television. The Top-k filter excludes Palm tree, leading to the accurate prediction of
Television. These examples demonstrate how the Top-k version of CODIP can improve performance by concentrating on the
most likely classes and filtering out irrelevant ones.

Figure 2. CODIPTop-k Success vs. CODIP Failure. Two examples from the CIFAR-100 dataset where the Top-k approach succeeds while
CODIP fails. The left image shows a correctly classified tulip, while the right image demonstrates another example of correct classification
by the Top-k method.



7. Alpha-Controlled Tradeoff for Robustness and Accuracy
The trade-off between clean and robust accuracy is controlled by the step size α, as demonstrated not only on CIFAR-10

but also on larger datasets like ImageNet. In Fig. 3, we illustrate that adjusting α allows for flexible control over this trade-off
on ImageNet, further validating our approach. Additionally, while Tab. 1 and Tab. 2 show that clean accuracy may drop,
this drop is manageable and adjustable by fine-tuning α. This supports our claim that CODIP can effectively manage the
clean-robust accuracy balance, even on more complex datasets with more classes, such as ImageNet, by adjusting the value
of α.

Note that Fig. 3 was evaluated on a random subset of 500 examples from the ImageNet validation set, as it is intended for
exemplification purposes.
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Figure 3. Imagenet Clean-Robust Accuracy Trade-off A demonstration of our proposed controlled clean-robust accuracy tradeoff. The
tradeoff is controlled by adapting the step size value α, specified beside each of CODIP workpoints. The used test-time methods ‘Base’
which is the base AT model.



8. γ Effect on Clean-Robust Accuracy Trade-off
As demonstrated in Fig. 3, the hyperparameter γ plays a critical role in controlling the clean-robust accuracy trade-off

across different values of α. Both α and γ contribute to restricting the transformation in order to maintain the accuracy of
the model. While α primarily governs the magnitude of the perturbation, γ regularizes the transformation by ensuring that it
remains subtle enough to preserve the natural characteristics of the image while successfully changing its class, even in the
presence of small-norm perturbations.

When γ = 0, the transformation is unregularized, leading to a situation where both clean and robust accuracy suffer sig-
nificantly. Without the restriction provided by γ, the transformation can deviate excessively from the input image, negatively
impacting both clean accuracy and robustness. This issue is illustrated in Fig. 4, where we compare transformations produced
by CODIP and targeted PGD. The image transformed by CODIP (right) maintains a closer resemblance to the original input
image, while the image generated by targeted PGD (left) appears unnatural and distorted. The ℓ2 distances further highlight
this: CODIP achieves a much lower distance (11.22) compared to targeted PGD (42.97). In addition, in Fig. 3, we show that
both robust and clean accuracy metrics are substantially worse when γ = 0, emphasizing that an unregularized transformation
fails to achieve the desired balance between robustness and preserving the integrity of the original input.

To achieve the optimal balance between clean and robust accuracy, it is essential to carefully tune γ. In Fig. 3, we
present three graphs that illustrate the impact of different γ values across various α settings. In each experiment, increasing
γ initially improves clean accuracy. For larger α values, increasing γ significantly enhances robustness, though after a
certain threshold, clean accuracy may begin to slightly decrease. For smaller α, robust accuracy increases slightly before
eventually decreasing. These findings demonstrate that while careful tuning of γ is necessary, it remains a critical parameter
for managing the clean-robust trade-off, as it controls how closely the transformation adheres to the original image, especially
under varying perturbation magnitudes. Specifically, we show its pivotal role in controlling clean accuracy

Targeted PGD
(42.97) 

CODIP’s 
transformation

(11.22)

Figure 4. CODIP vs. Targeted PGD A comparison between CODIP and targeted PGD class conditioned transformations. An image of
lorikeet is transformed into a toucan using CODIP and targeted PGD. A ℓ2 distance between the clean image and the transformed ones is
stated beneath the attack name.
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