
OccFlowNet: Supplementary Material

A. Qualitative Results

A.1. Predicted Occupancy

In Fig. A.1 and Fig. A.2, we show examples of pre-
dicted occupancy of our OccFlowNet model compared to
ground truth occupancy. Figure A.1 shows a comparison
between estimated and ground-truth occupancy from a top-
down perspective, while Fig. A.2 shows the voxel grids
from a third-person view. The figures depict results on the
Occ3D-nuScenes validation set, and the model used is Oc-
cFlowNet with occupancy flow, but without voxel labels.
As observable, the model can accurately estimate dynamic
and static objects around the vehicle, in day scenes as well
as in night scenes. In Fig. A.1 one can also recognize that
the predicted occupancy always appears stretched out from
the ego-vehicle into the depth direction, which results from
the rendering supervision approach. On the other hand, the
model is often more dense than the ground truth, which is
based on LiDAR scans. Our model can accurately fill out ar-
eas that are visible in the images but were not scanned by the
LiDAR. Additionally, we provide a set of videos with the
supplementary material that show inference results of our
model on some Occ3D-nuScenes validation scenes. Videos
scene-0558.mp4 and scene-0916.mp4 show predicted occu-
pancy from the perspective of the input cameras, from third-
person and from a Birds-Eye-View perspective. The videos
scene-0038 gt.mp4 and scene-0107 gt.mp4 compare model
predictions against the ground truth occupancy, both from a
third-person perspective.

A.2. Rendered Depth and Semantics

Additional qualitative results are provided in Fig. A.3.
The figure shows what the model ”sees” when the 3D voxel
predictions are rendered into the 2D space using differen-
tiable volume rendering. The LiDAR ground truth represent
the labels that the model receives during training, while the
rendered depth and semantics are the rendered occupancy
estimations of a trained OccFlowNet model. As clearly vis-
ible, the model has learned to estimate depth and semantics
correctly, and that volume rendering can be effectively used
to create 2D predictions, while being fully differentiable.

B. Details: Dynamic Ray Filter
Figure B.4 demonstrates how the dynamic ray filtering

is applied. During training, while loading the data, we filter
out dynamic objects in adjacent time steps. LiDAR points
associated with dynamic object classes are removed, such as
the car within the red box or the construction vehicle within
the green box depicted in the figure. In the current time step,
dynamic LiDAR points are kept, as the dynamic objects are
at the correct position. Then, a ray is generated for each
remaining LiDAR point on each input image. It is important
to note that this technique alone is insufficient, as moving
objects may expose background points that are not filtered
(disocclusions), introducing misleading supervision.

C. Details: Occupancy Flow
Figure C.5 shows a flowchart of the occupancy flow

mechanism proposed in the paper. As a precomputation
step, for each time step in the dataset, we compute the
movement of each voxel to each time step in the horizon
(e.g., to the previous 3 and next 3 time steps). We do this by
calculating the transformation between the corresponding
boxes in the current and the temporal frames, and assign
this transformation to all voxels inside the bounding box.
During training, after the forward pass (and before employ-
ing the rendering), we can now load the transformations for
all voxels of the current frame. We then clone the estimated
occupancy once for each temporal time step and apply the
corresponding flow. We now have one estimated occupancy
field for each temporal time step, but compensated for ob-
ject motion. Volume rendering is now applied as described
in the paper, but each camera renders the occupancy field
of its time step. Figure C.6 illustrates how the occupancy
flow is applied using the example of a single instance of
the car class. Given the current time step t and a target
time step t + 1, we utilize the precomputed transformation
from the current bounding box to the target bounding box to
move the estimated occupancy to the target time step. This
procedure is repeated for all time steps within the specified
horizon and for each dynamic object with a bounding box.
Note that all voxels that have been estimated to belong to a
static category are not moved. Using this technique, the dy-
namic ray filter becomes unnecessary, as dynamic objects
are now correctly positioned even in temporal time steps.
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Figure A.1. Qualitative results on the Occ3D-nuScenes dataset, viewed from the top. The proposed model (Ours Flow 2D) can estimate
the environment in 3D correctly and generalizes well to unseen areas.
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Figure A.2. Qualitative results on the Occ3D-nuScenes validation set. Images of the occupancy space are taken from above and behind
the ego vehicle (”third-person” view). The model can estimate the semantic occupancy well compared to the ground truth.

Significantly more rays can be generated for dynamic ob- jects, greatly increasing their detection performance.
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Figure A.3. Qualitative results on the Occ3D-nuScenes validation set. Each column shows an input image, and the corresponding
rendered depth D̂ and rendered semantics Ŝ when rendering the occupancy predictions using volume rendering, simulating the training
process. Below, the 2D training labels are shown, generated by projecting annotated LiDAR point scans onto the input images.

D. Source Code
We provide source code to reproduce the results pre-

sented in the paper at https://github.com/
boschresearch/OccFlowNet. Please follow the in-
structions in the README.md file to install the repository
and run the code. We provide instructions to train and
evaluate models in all of our configurations on the Occ3D-
nuScenes dataset.

https://github.com/boschresearch/OccFlowNet
https://github.com/boschresearch/OccFlowNet
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Figure B.4. Illustration of the dynamic ray filter. Shown are the input image, LiDAR depth and LiDAR semantics for a single camera
across three consecutive time steps when using the dynamic ray filtering. LiDAR points corresponding to dynamic objects are removed in
adjacent time steps t− 1 and t+ 1. In the current time step t, points of dynamic objects are preserved.
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Figure C.5. Flowchart illustrating how occupancy flow is applied. Prior to training, the flow of each voxel to all possible time steps is
computed. During training, the occupancy estimated by the model is duplicated once for each temporal time step, and the corresponding
flow is applied to each voxel. Then, each temporal camera uses the motion-compensated version of the occupancy to render the estimated
depth and semantic maps. Finally, LiDAR scans are projected on images to create 2D ground truth labels for loss computation.
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Figure C.6. Example of the occupancy flow. We precompute the transformations between corresponding boxes in adjacent time steps,
and use them to relocate the estimated occupancy V̂ to the target time steps.
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