Supplementary Material
PrivateEye: In-Sensor Privacy Preservation
Through Optical Feature Separation

1. Overview

The supplement is organized in the following order. We
first elaborate on our overall algorithm for PrivateEye. We
next showcase additional experimental results, including a
scenario involving privacy-preservation for 3 tasks (2 binary
and 1 multi-class) using a single encoder, along with corre-
sponding visualizations of CAMs and encoded images. We
also look at a case study of obfuscating facial identifica-
tion while recovering other attributes. Finally we explore
an alternative loss function that allows for both pushing and
pulling of features.

2. Algorithm

Algorithm 1 PrivateEye: Training the Encoder

Input: Tasks T1, T2 € T, Classifiers fr1, fr», Encoder
fe(:, &), Training data with images x, T1 labels y; and
T2 labels y5, Anchor points P;, P», Anchor loss weight
v, Learning rate 7
Output: Learned encoder f. parameters ¢
1: Train classifiers fr1, fro on T1, T2 using cross-entropy
loss H
2: Freeze fri1, fro parameters
3: for each epoch do
4. for each z, y1, ys in batch do
: v’ = fo(x)
x' = normalize(x)

5
6:
T (y1, A1), (y2, A2) = fra(2'), frz(2')
8:
9

Get CAMs CAM-T1, CAM-T2 {Eqn 1 and 2}
£anchor,Tl = lossanchor(CAM_Tla Pl)

10: £anchor,T2 = lossanchor(CAM_Tla PQ)
11: Eanchor = Lanchor,Tl + Lanchor,TQ

12: L= H(yl; gl) + H(yz, 172) + )\Acanchm‘
13: p=0¢—nVyuL

14:  end for

15:  Evaluate model on validation set for T1, T2
16: end for
17: return Return f.(:, @)

Algorithm 1 outlines our method for training the en-
coder. We start by pre-training the classifiers for the rel-
evant tasks, then begin training the encoder while keeping
the classifiers frozen. For each batch, the image is passed
through the encoder and normalized using both a mean and
standard deviation of 0.5. The normalized image is then
processed by each classifier to obtain the corresponding log-
its (y;) and intermediate activations (A;). These are used to
compute the Class Activation Maps (CAMs) for each clas-
sifier.

For binary tasks, the CAMs for the positive and negative
class labels can be simply combined by adding the posi-
tive and negative components of the CAMs before applying
ReLU or by taking its absolute value. For multi-class tasks,
we take the mean of the CAMs across each relevant logit.
The anchor loss is then calculated based on the CAMs and
anchor points for each task to facilitate feature separation,
along with the cross-entropy loss to ensure high classifica-
tion accuracy for each task. We backpropagate through the
networks using the AdamW [5] optimizer and update the
encoder parameters, repeating this process for a fixed num-
ber of epochs.

3. Additional Experiments
3.1. Case study: Three Tasks

We demonstrate that our method extends beyond two bi-
nary tasks by exploring a scenario with three tasks. Using
the CelebA [4] dataset, we choose the following tasks:

1. T1 (smiling?) € {smiling, not smiling}.
2. T2 (gender) € {male, not male}.

3. T3 (hair color) € {black hair, blond hair, brown hair,
gray hair}.

We push T1 features to the top-left (TL), T2 to the bottom-
right (BR), and T3 to the top-right (TR). We use three
ResNet18 models as classifiers, modifying the last fully-
connected layer to have one output for T1 and T2, and four
outputs for T3 to account for the hair colors. The loss for
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Figure 1. Visualization of the mean encoded images (pre-masking) and CAMs for the three tasks without any encoder, on the pretrained
classifiers. Notice how the CAMs are focused around the mouth, face, hair/beard regions for the T1, T2 and T 3 tasks respectively.
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Figure 2. Visualization of the encoded (pre-masking) and CAMs for the three tasks with our learned UNet-tiny encoder, on the pretrained
classifiers. Notice how the CAMs have been pushed to the top-left, bottom-right and top-right for T1, T2 and T3 respectively.
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Figure 3. Performance for training classifiers on a learned encoder
(UNet-tiny) on the three tasks: T1 (smiling), T2 (gender) and T3
(hair color). We use three different masks where we unmask either
the top-left (a), bottom-right (b) and top-right (d) to preserve tasks
T1, T2 and T3 respectively. (d) summarizes the trade-off curves.

T1 and T2 is binary cross-entropy, while the loss for T3
is cross-entropy. Our method can be adapted to any setup
for which we can calculate CAMs. We test this using the

UNet-tiny encoder and train it according to Algorithm 1
with an additional T3 objective (cross-entropy and anchor
loss) added to the loss function. The input and encoded im-
ages are of dimensions 128 x 128x 3.

Figures | and 2 visualize the encoded images and the
CAMs for each task. The CAMs, originally 16 x 16, have
been resized to 128 x 128 using bilinear interpolation for
better visualization. The visualizations clearly show that the
encoder has effectively pushed the features to the specified
corners. Carefully looking at the encoded image also shows
that the three corners are more irregular than the rest of the
image. We believe this contains information pertaining to
the said tasks.

To evaluate the privacy-utility trade-off, we freeze the
encoder and train ResNet18 classifiers to evaluate the per-
formance of various combinations of mask by selecting spe-
cific masks. For example, a mask which keeps only the
top-right part of the encoded image will preserve T2 accu-
racy and hinder an attacker from ascertaining information
about T1 and T3. Different combinations of masks along
with their masking ratios are shown in Fig. 3. We observe
that the utility task accuracies are well-preserved across all
three masks. At unmask ratios of about 1% (i.e., 99% of
the encoded image is masked) we achieve a strong trade-off
between utility and privacy tasks, maintaining high utility
accuracy and low privacy accuracy. However, some task
combinations exhibit less ideal trade-offs. For example, in
Fig. 3(b), while we maintain high T3 (utility) accuracy and
low T1 (privacy) accuracy across the shown masking ratios,



Utility ={T1} Utility ={T2, T3} Utility ={T1, T3, T4}
Private ={T2, T3, T4} Private ={T1, T4} Private = {T2}

Figure 4. Example of masking four tasks with the encoder trained
to push 7'1, 72,73, T4 to the top-left, top-right, bottom-left and
bottom-right respectively. Various masking patterns serve as filters
for utility and privacy tasks.
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Figure 5. Evaluation of a trained DONN-10-res (10-layer residual
DONN) encoder to perform task separation on smiling, gender and
identity. Importantly, one set of encoder weights is used for all
tasks. The tasks are filtered based on how we perform masking.

an attacker is able to recover T2 (privacy) accuracy by about
20%. We hypothesize that that this is because T3 (hair
color) leaks information about T2 (gender). Note that some
of the baseline performance for tasks T1 and T2 slightly
differs from the main manuscript because we use a subset
of the dataset containing hair color labels. Approximately
40% of the dataset lacks hair color labels, which negatively
impacts training, even if we set the label as None.

Overall this demonstrates that our encoder once trained
for a set of tasks, provides flexibility in selecting the utility
and privacy tasks. This is enabled by our ability to con-
trol the masking pattern and its associated masking ratios.
Fig. 4 showcases an example of some of the possible mask
patterns for 4 tasks.

3.2. Case Study: Obfuscating Identities

We now explore our method’s capability of handling
multiple tasks on a more a practical use case where specific
attributes about a person need to be inferred, but the per-
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Figure 6. DONN Attract Repel Loss function. Lower is better in
all cases.

son’s identity needs to be kept hidden. To evaluate this, we
use the previously trained encoder that learned to separate
the tasks of smiling and gender and test it on the identity
task. For the identity task, we select a subset of 10 identi-
ties from the CelebA dataset and train a ResNet18 classi-
fier, achieving a baseline accuracy of 100%. We then evalu-
ate different combinations of these tasks using the trained
encoder. To balance smiling and gender or identity, we
mask all but the top-left corner of the encoded image. Simi-
larly, for gender and smiling or identity, we mask all but the
bottom-right corner. Masking ratios between 99% and 90%
are used for this evaluation.

Fig. 5 demonstrates the results where we observe some
interesting trends. With aggressive masking ratios, we
achieve good trade-offs across all tasks. For example, for
the gender (utility) vs. identity (privacy) task, at 99% mask-
ing, utility accuracy drops by only ~2%, while private ac-
curacy decreases from 100% to 36%. We observe that gen-
der leaks more information about identity than smiling. We
hypothesize this is because the encoder only needs to push
features from a localized region (e.g., mouth) for the smil-
ing task but requires features from a larger region (e.g.,
face/head) for the gender task, which inadvertently contains
more information about the person’s identity.

3.3. Alternative loss function

The loss function in Eq. (6) in the main manuscript
pushes features belonging to a task to one corner of the im-
age but does not explicitly push away remnant features from
that corner. We enhance the loss function with an alternative
attract+repel method:

L:anchor,attract,Tl = losSanchor LC’AJVI,le

( (0,0)
‘Canchor,repel,Tl = lossanchor (LCAM,T2> (07 0)
( (1,1)

‘Canchor,attract,T2 = lOSSanchor LC’AM,T2>

)

) (1)
ﬁanchor,repel,TQ = lossanchor (LCAM,Tl, (]-7 1))
['cmchov" = Eanchor,attract,Tl + Lanchor,attract,TQ

_a(‘canchonrepel,Tl + Eanchonrepel,’l?)



The attract component pulls the corresponding features to-
wards its anchor, while the repel pushes away features from
its anchor. In Eq. (1), we attract T1 features to (0, 0) (top-
left corner) and repel T2 features from that corner, and sim-
ilarly for the bottom-right corner (1, 1). The strength of
repulsion relative to attraction is controlled by the hyper-
parameter . When masking is performed for utility task
T1, the unmasked region should now leak less information
about T2.

Fig. 6 compares the original loss function (« = 0.0)
and the attract-repel loss across different values of o. We
observe different performances on task pairs (T1, T2) €
(smiling, gender) and (T1, T2) € (gender, smiling). For the
former, e = 0 provides the best trade-off, while for the lat-
ter, « = (.2 offers the best trade-off. A better trade-off is
indicated by having both low A and Ay, and an over-
all lower Ay,qde—oyy. This indicates that for certain task
configurations, the repel loss component significantly aids
in achieving a better utility-privacy balance.

3.4. Additional Dataset

We setup a privacy-utility task on a grayscale CIFAR-10
dataset [2] with classes € {airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck}. The utility task is to
perform animal vs. machine classification, and the private
task is to perform the typical 10-class CIFAR-10 classifica-
tion. The backbone we use is a ResNet18 which achieves
an accuracy of 99% and 88.4% on the two tasks respec-
tively with no encoders. With 95% masking, we achieve
a utility/privacy accuracy of 75.7% and 29.3% respectively
with a DONN.

4. Masking Details
4.1. Digital Implementation

As described in Section 3.3.3, we generate static corner-
based masked to allow utility features to go through while
simultaneously obfuscating private features. The masks are
generated using Eq. (2):

Mtopflefta Mbottomfright = tmu(dmg), tml(dzag) 2

Here, triu and tril represent the upper and lower triangular
matrix operations, with diag as the principal axis control-
ling the masking strength. All values above the principal
axis are set to 1, and the rest are 0. In practice, we generate
these masks using NumPy or PyTorch’s tril or triu opera-
tion.

4.2. Hardware Implementation

In typical image sensors, a row addresser and a column
addresser are placed beside the pixel array to sequentially
pass the readout-enable signals to all pixels for a full-sized
image readout. However, these addressers can also be easily
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Figure 7. We contrast our method with other dimensionality re-
duction methods and show that DONN provides better trade-offs.

programmed to change their addressing start/end positions
to only read out the pixels within a customized region, i.e.,
the mask. The mask can either be regular shapes like rect-
angular or triangular, or irregular shapes, by changing the
addressing start/end positions for every row/column of pix-
els.

5. Additional Discussion
5.1. Advantages of DONN

Higher Level of Security. DONNs enhance security
through their unique computational approach. Optical pro-
cessing combined with pixel dropout techniques obfuscates
sensitive information before the image is read out, ensuring
that by the time data is converted to the digital domain, pri-
vate features are effectively masked. This preemptive mea-
sure secures private information even if the edge system is
breached, unlike traditional digital privacy filters which are
vulnerable if hacked.

5.2. Limitations of DONNSs

Privacy with Linear Models. Despite our encoder being
linear, it performs well due to the effective combination of
feature separation and masking, which acts as dimension-
ality reduction by preserving only the most relevant fea-
tures. Dimensionality reduction techniques like Principal
Component Analysis (PCA) and Supervised PCA (SPCA)
are known to achieve compressive privacy, balancing both
privacy and compression [1,3]. To evaluate our method, we
compare it with PCA, SPCA, and a linear projection from a
3-layer MLP. We use the same number of principal compo-
nents as the masking ratio used for DONN and employ a lo-
gistic regression classifier. Fig. 7 shows that while PCA and
SPCA have a subpar utility-privacy trade-off, the MLP pro-
jection demonstrates a strong trade-off. Our method aligns
with these findings, indicating that our mode of dimension-
ality reduction can effectively enhance privacy.
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