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6. Supplementary Video

In the attached video, we first showcase the result on

the Kintinuous scene visualizing the field centers and their

movement during loop closure. The second part shows

a comparison with an ablated, single-field version of our

method (supplementing Fig. 6 in the main paper). In the

last part, we show the mapping on the large-scale apt0

scene which includes two smaller loop closures. More

videos can be found on our project page https://kth-

rpl.github.io/neural_graph_mapping/.

7. Limitations and Discussion

While our approach enables efficient integration of loop

closure into the volumetric map, it is not without draw-

backs. In particular, the multi-field representation is less

memory-efficient compared to monolithic neural field rep-

resentations, since those can use the available network ca-

pacity relatively unconstrained, whereas this adaptiveness

is constrained to the local spheres in our approach. Sharing

hash tables among multiple fields might be one direction to

reduce the memory overhead.

Another downside of our method is that the neural scene

representation is currently not used to improve the SLAM

result and a tighter integration of dense mapping and sparse

tracking could lead to improved robustness. A similar lim-

itation applies to GO-SLAM [10], which also does not use

the neural map for pose estimation. In [4] this property is

referred to as “decoupled”. While “coupled” approaches

that use the map for frame-to-map alignment appear ele-

gant they are not without drawbacks. Current methods for

frame-to-map alignment using neural representation have a

small basin of convergence and hence only work for slow

sequences with small baselines. They also typically rely

on depth measurements to be available. In contrast, feature-

based methods can potentially estimtate poses even for large

baselines and can directly benefit from progress in image

matching. In the future we want to investigate how to com-

bine sparse features and neural maps in a principled way.

8. Method Details

8.1. Sampling Strategy

As described in Sec. 3.3 and illustrated in Fig. 4 in the

main paper, a three-stage sampling procedure is used. First,

a subset of fields is sampled, then rays are sampled for each

field, and finally points are sampled along each ray. In the

following we describe the details of each stage.

Fields Especially with larger scenes, it is important that

recently added fields and those currently observed are op-

timized with a higher rate than out-of-view fields that have

already been optimized before. To achieve this, the cur-

rently observed fields Fobs
t ⊆ Ft are determined and sam-

pled with a higher probability. Specifically, a total of Nf

fields are sampled; half from the currently observed fields

and the remaining ones from all fields Ft discarding dupli-

cates.

Rays To sample supervision targets, each sampled field i
is approximated by a set of points qi

j , j = 1, ..., Napprox

sampled uniformly on the field’s sphere of radius r. These

points are projected into all keyframes. A field is considered

visible in a keyframe, if at least one of the field’s points qi
j

is inside the keyframe’s frustum and the projected depth of

qi
j is smaller than the observed depth at the projected 2D

point. This yields a set of keyframes Ki
t ⊆ Kt. Nr rays per

field (i.e., target rays) are then sampled via the 2D bounding

boxes of the projected points qi
j in the keyframes Ki

t. For

each target ray (o,d) the closest point to the field center is

computed as o+ lcd and only a ray segment [lc − r, lc + r]
covering the sphere will be considered for optimization.

Points Given a ray segment [lmin, lmax], Nup points are

uniformly sampled across the segment, and Ndp points are

uniformly sampled in the truncation interval τ around the

observed depth, that is, in the interval [lobs−τ, lobs+τ ]; the

full ray interval is used, if there is no depth measurement or

lobs /∈ [lmin, lmax]. This yields a total of Np = Nup +Ndp

query points per ray segment during optimization.

In total, each optimization iteration will contain a maxi-

mum of NfNrNp query points.

8.2. K­Nearest Neighbors Queries

We compute the color and signed distance at a query

point as the weighted average of the k nearest fields. Specif-

ically, let x ∈ R
3 denote the query point. Let ci, si, di, i =

1, ..., k denote the returned color, signed distance, and dis-

tance to the field center for the k nearest fields for the query

point x. We compute weights based on the softmax of the

negative distances, that is,

ui =
e−ξdi

∑k
j=1 e

−ξdj

, (1)

https://kth-rpl.github.io/neural_graph_mapping/
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Figure 9. Visualization of k-nearest neighbor distance-based av-

eraging. The top row shows the effect of varying k. The second

row shows the effect of varying ξ. The last row shows the effect

of excluding fields with distances di greater than the field radius r

from the averaging.

where ξ determines the transition speed. The combined

color and signed distance are then computed as a weighted

sum, that is, c =
∑k

i=1 uici and s =
∑k

i=1 uisi.
We always use the k nearest fields even when only the

closest field is within radius r. However, we set ξ suffi-

ciently high such that the transition region becomes small

and fields with di ≫ r will have no significant contribution

to the final value. This is a feasible strategy, since fields are

optimized for all ray segments intersecting them even when

the segment is terminating outside the sphere. Hence, each

field will in practice capture a region larger than a sphere

with radius r.

Figure 9 illustrates the effect of this weighted averaging

for different values of ξ, k, and with and without ui = 0
for di > r on a 2D toy example with three fields of fixed

color. Note that the distance-weighted averaging leads to

smooth transitions in the overlapping regions. When forc-

ing ui = 0 for di > r transitions on the boundaries are

unavoidable, hence we opt for the strategy described in the

previous paragraph. For the experiments we use k = 2 and

ξ = 10.

8.3. Parameters

In Tab. 3 we provide a full list of parameters, the used

value to achieve the experimental results, and a brief de-

scription. Parameters were tuned manually and the same

setting is used for all experiments (with the exception of τ ,

which is increased for the real-world datasets).

9. Experiment Details

Baseline Setup All baselines are evaluated using the pa-

rameters published as part of the published code. For ad-

ditional datasets for which no parameters were provided,

the most similar dataset’s parameters were adopted (i.e.,

for Replica-Big the provided setup for Replica is used; for

Kintinuous the setup for ScanNet). Scene boundaries were

manually adjusted to cover the observed area with extra

margin to account for errors in positioning.

In our experiments, we noticed that Co-SLAM [9] uses

the ground-truth pose of the first frame to initialize the

SLAM system, which leads to axis-aligned planes. We

found that planes (such as walls, floors, and ceilings) which

are axis-aligned are significantly better completed using

the one-blob encoding [5] than generally-oriented planes.

Therefore, for a fair comparison, we modified Co-SLAM’s

implementation to start from a random orientation instead.

We note that this mainly reduces qualitative scene comple-

tion, however, on one of the Replica scenes it leads to track-

ing issues and hence poor reconstruction results. Figure 10

shows an example of the scene completion capability of

Co-SLAM with and without ground-truth initialization (i.e.,

with and without axis-aligned planes).

(a) With axis-alignment (b) Without axis-alignment

Figure 10. Co-SLAM result with and without ground-truth initial-

ization. Ground-truth initialization leads to axis-aligned walls and

floors, which in turn leads to significantly better scene completion.

9.1. Evaluation Protocol

Let Mw
gt and Mw̃

est denote the ground-truth mesh and

estimated mesh, respectively. We assume that Mw̃
est has

already been globally aligned with Mw
gt, which is typi-

cally achieved by either aligning the first frame in the se-

quence or by aligning the trajectories using the Umeyama

algorithm. Starting from Mw
gt and Mw̃

est further prepro-

cessing steps are performed before the evaluation metrics

are computed.

1. Unobserved parts of the ground-truth mesh Mw
gt are

removed. In particular, we apply two removal steps.

First, vertices falling more than 2 cm outside the scene

bounding box are removed. The scene bounding box is

computed as the intersection of a manually-set bound-

ing box (used to exclude outliers in the depth map



Table 3. Overview of parameters.

Parameter Value Description

r 1m Field radius

Nf 2 Number of fields optimized in parallel in each iterations

Nr 512 Number of ray segments sampled per field during optimization

Nup 8 Number of uniformly sampled points distributed along each ray segment during optimization

Ndp 16 Number of depth-guided points distributed along each ray segment during optimization

τ 0.1m or 0.2m∗ Truncation distance; used for scaling depth-guided sampling and for capping the supervision range (i.e., dividing samples into free-

space samples and TSDF samples)

η 20.0 Determines how fast occupancy probability decays around surfaces

k 2 Number of nearest neighbors used during evaluation

ξ 10.0 Distance weighing determining transition speed between two fields

L 1 Number of MLP layers following the permutohedral encoding; excluding the final linear layer

T 212 Hash table size for permutohedral encoding

Nlevels 16 Number of resolution levels for permutohedral encoding

Nfpl 16 Number of features per level for permutohedral encoding

rcoarse 0.1 Coarsest resolution for permutohedral encoding

rfine 0.0001 Finest resolution for permutohedral encoding

λcolor 1.0 Weight of color loss

λdepth 1.0 Weight of depth loss

λfs 40.0 Weight of free-space loss

λtsdf 50.0 Weight of TSDF loss

δ 5 cm Huber loss threshold

γ 1 × 10−3 Learning rate used for Adam optimizer [3]

λ 1 × 10−5 Weight decay used for Adam optimizer [3]

∗

The truncation distance is increased for real-world datasets to account for the increase in depth noise.

present in some scenes) and an automatically com-

puted bounding box (based on the ground-truth trajec-

tory and depth maps). Second, vertices that are not

in front or up to 3 cm behind any rendered depth map

are removed. These depth maps are rendered from

the ground-truth trajectory and from additional virtual

views manually placed to improve the evaluation of

scene completion (same as in Co-SLAM [9]). This

yields a culled ground-truth mesh used for evaluation

Mw ∗
gt.

2. To further equalize slight differences in alignment be-

tween different methods, we perform another align-

ment step using point-to-plane-based iterative closest

point from Mw̃
est’s vertices to Mw

gt’s vertices yield-

ing an aligned estimated mesh Mw
est.

3. The aligned estimated mesh Mw
est follows the same

removal process as the ground-truth mesh (see step

1 above) yielding the culled estimated mesh used for

evaluation Mw ∗
est.

For the evaluation, Nsamples = 200 000 points are uni-

formly sampled on both meshes yielding the point sets

G = {xi ∼ U( Mw ∗
gt) | i = 1, ..., Nsamples} and E =

{yi ∼ U( Mw ∗
est) | i = 1, ..., Nsamples}, where U(·) de-

notes the uniform distribution. The point sets are used to

compute accuracy, completion, accuracy ratio, and comple-

tion ratio as

Acc(G, E) =
1

|E|

∑

y∈E

min
x∈G

∥y − x∥ (2)

Comp(G, E) =
1

|G|

∑

x∈G

min
y∈E

∥x− y∥ (3)

AR(G, E) =
1

|E|

∑

y∈E

[

min
x∈G

∥y − x∥ < ∆

]

(4)

CR(G, E) =
1

|G|

∑

x∈G

[

min
y∈E

∥x− y∥ < ∆

]

, (5)

where [·] denotes the Iverson bracket and ∆ = 5 cm in our

experiments. Since accuracy ratio and completion ratio can

be interpreted as precision and recall of the reconstruction,

we further use the F1-score

F1(G, E) =
2

AR(G, E)−1 +CR(G, E)−1
(6)

to summarize reconstruction performance in one metric.

10. Additional Results

Detailed Results on Replica and NRGBD Table 4 and

Table 5 shows per-scene results on the Replica and NRGBD

dataset, respectively. Overall, Co-SLAM achieves the best

result, albeit with small margins; it fails on room1 leading

to worse average results. Loopy-SLAM achieves near per-

fect accuracy at the cost of worse completion. As noted in

the paper it uses the ground-truth depth for rendering and
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Figure 11. Comparison of rendered views with different num-

ber of neighbors k. By increasing the number of nearest neigh-

bors taken into account, the number of visible field transitions

decreases. These transitions are most visible in unobserved re-

gions, such as the underside of the countertop shown here (see

highlighted regions).

mesh extraction and is hence not fairly comparable to the

other methods. Overall, this experiment highlights that our

contributions aiming for improved loop closure integration

do not significantly worsen performance on small scenes.s

Additional Qualitative Results In Figs. 12 to 16 addi-

tional qualitative results on the Replica, NRGBD, and Scan-

Net datasets are shown. In most scenes our approach per-

forms close to the best performing method Co-SLAM. Co-

SLAM achieves slightly more detailed and smoother re-

sults, which might be due to their more effective hash ta-

ble use and the additional smoothness loss. Loopy-SLAM

sometimes produces meshes with wrong colors; MIPS-

Fusion shows transition and streaking artifacts; and GO-

SLAM produces more noisy results particularly in terms of

appearance.

Our method performs most consistent compared to other

methods that support loop closure.

K-Nearest Neighbor Averaging Figure 11 shows render-

ings of our model with varying values for k (see Sec. 8.2).

For higher k visible transitions between fields are reduced

and smoothed out. Note that due to our independent training

scheme, all fields are trained in overlapping regions making

averaging at the query point a viable strategy. While higher

values for k lead to improved results, it also multiplies the

number of queries required for rendering and mesh extrac-

tion (note that optimization time is unaffected by k).
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Table 4. Comparison of mesh quality on Replica (bestO, second bestO, third bestO).

offi0 offi1 offi2 offi3 offi4 room0 room1 room2 Avg.

NICE-SLAM [11]

Acc (cm) 1.90 1.61 O 3.13 2.92 O 2.60 2.47 2.21 O 2.17 O 2.38 O

Acc.-Ratio (%) 94.87 95.30 89.78 90.17 O 93.21O 93.38 94.92 O 93.75O 93.17O

Comp. (cm) 2.37 2.15 2.89 3.42 3.91 2.93 2.31 2.77 O 2.84

Comp. Ratio (%) 92.58 92.15 88.78 86.20 85.72 90.90 93.57O 90.97 O 90.11

F1-Score (%) 93.71 93.70 O 89.28 88.14 89.31 92.12 94.24O 92.34 O 91.60

Co-SLAM [9]

Acc (cm) 1.55O 1.33O 2.76 O 2.61O 2.22O 1.99O 19.90 1.92O 4.28

Acc.-Ratio (%) 96.15 96.75 O 90.92 92.04O 92.70 95.37O 38.68 93.51 O 87.02

Comp. (cm) 1.54O 1.68O 2.39O 2.73O 2.47O 2.37O 17.47 2.08O 4.09

Comp. Ratio (%) 96.04O 94.57O 91.99O 90.92O 90.96O 93.43O 40.03 93.16O 86.39

F1-Score (%) 96.09O 95.65O 91.46 O 91.48O 91.82O 94.39O 39.34 93.34O 86.70

GO-SLAM [10]

Acc (cm) 1.88 1.72 3.51 3.97 3.56 3.45 2.15O 2.90 2.89

Acc.-Ratio (%) 96.31O 97.55O 84.49 79.64 86.34 84.59 96.04O 89.50 89.31

Comp. (cm) 3.12 4.17 6.74 7.43 8.39 6.83 4.26 8.46 6.17

Comp. Ratio (%) 85.21 82.89 69.40 63.81 67.33 69.44 82.89 72.65 74.20

F1-Score (%) 90.42 89.63 76.20 70.85 75.66 76.27 88.98 80.20 81.03

MIPS-Fusion [8]

Acc (cm) 1.65 1.61 O 3.16 3.43 2.62 2.30 2.64 2.52 O 2.49

Acc.-Ratio (%) 96.16 O 95.41 O 91.21 O 88.96 89.99 94.95 O 93.76 90.60 O 92.63

Comp. (cm) 1.78 1.86 O 2.99 3.22 2.67 O 2.78 2.13O 2.69 O 2.52 O

Comp. Ratio (%) 94.96 93.09 O 89.16 88.40 89.64 O 92.37 O 93.48 O 89.92 O 91.38O

F1-Score (%) 95.56 O 94.24 O 90.17 88.68 89.82 93.64 O 93.62 O 90.26 O 92.00 O

Loopy-SLAM [4]

Acc (cm) 1.05 0.84 1.33 1.53 1.49 1.45 1.13 1.20 1.25

Acc.-Ratio (%) 100.00 100.00 100.00 99.98 99.99 99.99 100.00 99.99 99.99

Comp. (cm) 1.65 2.16 3.64 3.03 3.80 3.45 2.95 2.65 2.92

Comp. Ratio (%) 93.43 90.80 86.33 88.67 86.32 88.58 89.78 90.32 89.28

F1-Score (%) 96.61 95.18 92.66 93.98 92.65 93.94 94.62 94.91 94.32

Ours-SF

Acc (cm) 1.55 O 1.79 2.49 O 3.09 2.38 O 2.12 O 2.52 O 2.53 2.31O

Acc.-Ratio (%) 96.25 O 94.20 92.51 O 89.94 92.83 O 94.51 O 94.59 O 90.08 93.11 O

Comp. (cm) 1.59 O 2.01 2.66 O 2.94 O 2.89 O 2.46 O 2.23 O 3.16 2.49O

Comp. Ratio (%) 95.88 O 92.32 O 90.65 O 89.31 O 88.24 O 91.92 O 93.20 88.75 91.28 O

F1-Score (%) 96.07 O 93.25 91.57O 89.63 O 90.47 O 93.20 O 93.89 O 89.41 92.19O

Ours

Acc (cm) 1.60 O 1.86 2.46O 2.81 O 2.36 O 2.14 O 2.73 2.85 2.35 O

Acc.-Ratio (%) 95.74 94.20 92.52O 90.53 O 92.81 O 94.46 92.55 89.26 92.76 O

Comp. (cm) 1.67 O 2.00 O 2.76 O 2.78 O 3.01 2.71 O 2.16 O 4.00 2.64 O

Comp. Ratio (%) 95.27 O 91.74 89.65 O 89.01 O 88.02 91.88 93.41 O 87.96 90.87 O

F1-Score (%) 95.50 92.95 91.06 O 89.76 O 90.35 O 93.15 92.98 88.61 91.80 O



Table 5. Comparison of mesh quality on NRGBD (bestO, second bestO, third bestO).

br ck gr gwr ki ma sc tg wa Avg.

NICE-SLAM [11]

Acc (cm) 2.46 10.76 2.33 2.71 9.18 1.70 O 4.55 8.37 7.37 5.49

Acc.-Ratio (%) 92.41 65.34 93.87 93.63 57.29 95.06 O 71.69 56.22 77.38 78.10

Comp. (cm) 4.82 14.21 3.91 3.19 12.82 3.36 10.69 8.02 5.39 7.38

Comp. Ratio (%) 86.18 53.58 86.66 87.64 50.04 84.06 O 58.79 59.24 69.04 70.58

F1-Score (%) 89.19 58.88 90.12 90.54 53.42 89.22 O 64.60 57.69 72.97 74.07

Co-SLAM [9]

Acc (cm) 2.21 O 4.73 1.89 O 2.02 O 7.40 1.74 3.30 O 2.07 O 6.24 3.51

Acc.-Ratio (%) 93.24 O 75.16 95.17 O 94.84 77.72 93.98 78.01 O 92.05 O 84.92 87.23

Comp. (cm) 2.06O 8.76 O 2.93 O 2.41O 5.14 O 2.75O 4.29 O 2.83O 3.85 O 3.89O

Comp. Ratio (%) 93.49 O 63.17 O 91.32O 93.96O 78.19O 86.41O 70.90 O 86.62O 81.70 O 82.86 O

F1-Score (%) 93.37 O 68.65 O 93.21O 94.40O 77.96 90.03O 74.29 O 89.26O 83.28 O 84.94 O

GO-SLAM [10]

Acc (cm) 3.89 4.08 2.50 2.87 3.28 O 1.54O 6.46 1.48O 5.46 3.51

Acc.-Ratio (%) 77.64 81.94 91.46 86.87 84.74 O 97.44O 66.62 96.32O 73.90 84.10

Comp. (cm) 9.25 29.60 9.50 4.50 5.11O 4.60 12.35 7.26 12.57 10.53

Comp. Ratio (%) 64.29 54.56 71.31 75.12 72.58 75.53 54.24 70.78 57.33 66.19

F1-Score (%) 70.34 65.51 80.14 80.57 78.19 O 85.10 59.80 81.59 64.57 73.98

MIPS-Fusion [8]

Acc (cm) 2.44 3.48 O 1.94 2.10 9.24 1.72 O 3.49 1.61 O 3.30 O 3.26 O

Acc.-Ratio (%) 91.20 84.69 O 94.53 95.76 O 75.62 93.68 75.92 93.59 O 89.61 O 88.29 O

Comp. (cm) 5.05 35.03 8.33 3.07 8.91 O 3.15 O 8.63 3.61 O 11.52 9.70

Comp. Ratio (%) 83.49 55.36 83.09 89.38 70.86 82.81 64.98 79.77 72.89 75.85

F1-Score (%) 87.18 66.95 88.44 92.46 73.16 87.91 70.02 86.13 O 80.39 81.40

Loopy-SLAM [4]

Acc (cm) 1.44 3.41 1.93 2.00 20.41 1.14 2.59 ✗ 3.02 4.49

Acc.-Ratio (%) 99.85 85.01 98.99 98.52 61.61 99.93 94.86 ✗ 85.87 90.58

Comp. (cm) 3.24 13.57 3.41 3.14 8.31 3.17 3.39 ✗ 4.40 5.33

Comp. Ratio (%) 90.29 71.09 88.58 89.86 68.23 83.98 85.03 ✗ 76.88 81.74

F1-Score (%) 94.83 77.43 93.50 93.99 64.75 91.26 89.67 ✗ 81.13 90.58

Ours-SF

Acc (cm) 1.68O 3.57 O 1.82 O 1.95 O 2.28 O 1.79 2.33O 2.55 3.10 O 2.34 O

Acc.-Ratio (%) 94.57O 86.96 O 95.12 O 96.34O 95.24 O 93.90 95.66O 89.75 90.47 O 93.11O

Comp. (cm) 2.16 O 7.49O 2.86O 2.64 O 25.86 3.10 O 3.84O 3.79 3.73O 6.16 O

Comp. Ratio (%) 94.87O 78.60O 90.95 O 91.76 O 74.19 O 84.16 O 88.77O 82.27 O 83.45O 85.45O

F1-Score (%) 94.72O 82.57O 92.99 O 93.99 O 83.41O 88.76 O 92.09O 85.85 O 86.82O 89.02O

Ours

Acc (cm) 1.77 O 3.19O 1.78O 1.94O 2.18O 1.78 2.42 O 2.65 2.92O 2.29O

Acc.-Ratio (%) 93.83 O 88.67O 95.50O 96.30 O 96.00O 94.24 O 94.95 O 87.40 90.90O 93.09 O

Comp. (cm) 2.46 O 8.98 O 2.88 O 2.67 O 29.26 3.25 4.33 O 3.33 O 4.18 O 6.82 O

Comp. Ratio (%) 93.84 O 76.89 O 90.83 O 91.31 O 73.69 O 82.80 87.90 O 83.53 O 81.51 O 84.70 O

F1-Score (%) 93.83 O 82.36 O 93.11 O 93.74 O 83.38 O 88.15 91.29 O 85.42 85.95 O 88.58 O
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Figure 12. Qualitative comparison of final meshes extracted by all methods on the Replica dataset [6, 7] (part 1).



office4 room0 room1 room2

G
ro

u
n
d
-t

ru
th

N
IC

E
-S

L
A

M
[1

1
]

C
o
-S

L
A

M
[9

]
G

O
-S

L
A

M
[1

0
]

M
IP

S
-F

u
si

o
n

[8
]

L
o
o
p
y
-S

L
A

M
[4

]
O

u
rs

-S
F

O
u
rs

Figure 13. Qualitative comparison of final meshes extracted by all methods on the Replica dataset [6, 7] (part 2).
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Figure 14. Qualitative comparison of final meshes extracted by all evaluated methods on the NRGBD dataset [1] (part 1).
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Figure 15. Qualitative comparison of final meshes extracted by all evaluated methods on the NRGBD dataset [1] (part 2).
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Figure 16. Qualitative comparison of final meshes extracted by all methods on the ScanNet dataset [2]. Our method fails on

scene0181 00 due to tracking issues in the underlying SLAM system in a feature-less region.
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