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A. Background
Latent Diffusion Models. Diffusion models add in-

crements of random noise to input data during a variance-
preserving Markov diffusion process [3, 12, 14], and then
learn to reverse the diffusion process by denoising to con-
struct desired data samples. Latent Diffusion Models
(LDMs) [9] perform diffusion and denoising within a low-
dimensional latent space z, into which a Variational Au-
toencoder (VAE) [4] encodes an image z0 = E(I) using a
pretrained encoder E(·). Formally, the noisy latent repre-
sentation of zt is obtained by adding noise to zo in every
step t until q(zT | z0) approximates a Gaussian distribu-
tion N (0, I). In the denoising process, noise ϵθ(zt, t, c)
is predicted for each timestep t from zt to zt−1. Here, ϵθ
represents a noise predicting neural network, typically a U-
Net [10], while c denotes conditioning information. The
training loss L minimizes the error between actual noise
ϵ ∼ N (0, I) and predicted noise ϵθ:

L = EE(I),cp,ϵ,t

[
ω(t)∥ϵ− ϵθ(zt, t, cp)∥22

]
, t = 1, ..., T

(1)
Here, ω(t) is a hyperparameter that adjusts the loss weight-
ing at each timestep, and cp are text prompt embeddings
from CLIP in the case of text-to-image models such as Sta-
ble Diffusion [9]. After training, the model can progres-
sively denoise from zT ∼ N (0, I) to z0 using a fast diffu-
sion sampler [8,13], with the final z0 decoded back into the
image space I using a frozen decoder D(·).

ControlNet. ControlNet [16] integrates spatially local-
ized, task-specific image conditions into LDMs. It does this
by cloning the blocks of a pretrained LDM, retraining these
blocks, and then adding them to the original model output
using zero convolution. These ControlNet blocks C modify
the latent output features f of each U-Net decoder block:

f c = f + Z (C(x, cf)) (2)

Here, Z denotes zero-convolution and cf represents the
task-specific spatial condition, which is incorporated in the
fine-tuning of ControlNet blocks by minimizing the loss

Eq. (1) with ϵθ(zt, t, cp, {f i
c}), i.e., conditioned on all Con-

trolNet block output features.

SMPL model. The Skinned Multi-Person Linear
(SMPL) model [7], is widely used in computer graphics
and vision for anatomically plausible and visually realis-
tic human body deformations across various shapes and
poses. SMPL combines a parametric shape space, cap-
turing individual body shape variations, with a pose space
encoding human joint positioning. The model uses low-
dimensional parameters for pose, represented in joint an-
gles θSMPL ∈ R24×3×3, and shape, represented in principal
shape variation directions βSMPL ∈ R10, to produce a 3D
mesh representation (M ∈ R3×N ) with N = 6890 ver-
tices. A vertex weight evaluates the relationships between
vertices and body joints.

(a) β2 = −4.0 (b) β2 = 2.0

Figure 1. Varying the second shape component β2 of the SMPL
[7] model. This component is highly correlated with body mass,
which we use to evaluate the methods across different body types.
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B. Evaluation Details and Additional Results

B.1. Shape and Pose Accuracy

The SMPL [7] model encodes body shape using shape
components β = {β1, β2, ..., β10}, derived through a prin-
cipal component analysis of body meshes. For some of
these components, identifiable and distinct effects on body
shape can be determined. Specifically, the β1 component
strongly correlates with overall height, while β2 strongly
correlates with body mass (Fig. 1). The SURREAL [15]
dataset provides body shape parameters collected from in-
the-wild data. Although the data is of high quality and
diversity, it contains limited samples for overweight and
obese body types, with only about 4% of samples hav-
ing a β2 ≤ −2. To fairly evaluate methods across body
shapes, we augment the evaluation dataset (AS) to ap-
proximate a uniform shape distribution with respect to β2.
Specifically, for our extended analysis dataset (AS-Ext) we
generate 500 pose-shape pairs for each increment of 1 of
β2 values between -6 and -2, using random poses from
AIST [5] and shapes with corresponding β2 sampled from
SURREAL [15].

B.2. Background Stability

To measure background stability, we generated images
using three prompts for 100 poses sampled from AIST, re-
sulting in 300 prompt+pose samples. We use two prompts
from Fig. 7 of the main paper and “a man dancing in the
desert”. For each sample, we generated images under both
fit and not-fit shape conditions using our approach and Con-
trolNet. We then used MaskRCNN [2] to mask out the per-
son in each image. By computing the average LPIPS [17]
between the masked versions of fit and not-fit pairs, we
quantified the perceptual loss between the generated back-
grounds when only the shape condition varied. ControlNet
achieved an average LPIPS of 10.26, while our method im-
proved on this with an average LPIPS of 9.13.

B.3. Animation

AnimateDiff [1] enables transition-consistent generation
of frames, and can be controlled using a Control mechanism
such as ControlNet. We use our approach to add 3d para-
metric SMPL control to the animations and generate sev-
eral clips with both slim and obese variants. See Fig. 4 for
frames from our animation. We provide several animated
clips in our supplemental video. The animation appears
smooth, with no notable degradation compared to using the
original slim-body-type ControlNet. Faces appear less con-
sistent, which is, however, a general limitation of the Ani-
mateDiff method.
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Figure 2. Ablation: including the prompt-condition into the SD
U-Net of CSMPL, i.e., ϵSD(∅, co) + w1g⃗cp,co + w2g⃗cp,cs,co

B.4. Extended Guidance Ablation

Our proposed approach in Section 3.3 of the main pa-
per always uses the empty prompt (∅) for the attribute guid-
ance SD U-Net’s cross-attention layers during training and
inference. That this is desirable can be seen in Fig. 2,
in which we use an ablated configuration which also uses
the prompt in the SMPL-guidance SD UNet, resulting in
the guidance vector g⃗cp,cs,co . As the two guidance vec-
tors can no longer be scaled independently, increasing the
guidance scales leads to an unstable background and exag-
gerated contrast. In Fig. 3 we also provide the prompt to
the SD U-Net’s cross-attention layers during inference, but
do not use guidance composition, i.e., only using ϵSyn. We
vary the combined prompt+SMPL guidance scale (w) for
this configuration. While the body-shape is adhered to, the
results exhibit a distinct synthetic appearance, which is ex-
acerbated when increasing the shape adherence via w (in
contrast to increasing w2 of our proposed approach).

B.5. Guidance Scale Analysis

Our paper generally uses guidance scales (w1, w2) of 7.5
for all images, unless otherwise specified. These scales can
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Figure 3. Ablated configuration without domain adaptation and no guidance composition. The prompt condition is supplied to the Stable
Diffusion U-Net. We show results for different scales w in the ablated composition ϵSyn(∅, ∅, co) + wg⃗cp,cs,co .

be varied independently to adjust the strength of each com-
ponent. In Fig. 5, we show an extended version of Fig. 9a
from the main paper, by varying the guidance scale between
0 and 25. Moderate guidance scales below 25 yield high-
fidelity images. Increasing the domain guidance scale (w1)
improves prompt adherence but introduces unstable back-
grounds and artifacts in w1 = 25. Similarly, increasing
w2 exaggerates the SMPL-shape, causing body artifacts at
w2 = 25. Higher w2 values make images resemble the syn-
thetic SURREAL dataset, while higher w1 values decrease
shape adherence. The diagonal (w1 = w2) provides the best
combination of prompt adherence, shape adherence, and vi-
sual appearance.

Fig. 6 uses the same guidance scale setup with the
prompt “a ballet dancer” and a dancing pose from AIST [5].
In this context, Stable Diffusion is biased towards the gen-
eration of slim body types, even with “obese” added to
the prompt. As discussed in our limitations, our method
similarly struggles to reconcile such conflicting informa-
tion. Using an obese body shape for our SMPL-conditioned
model only imparts the shape if w2 is much larger than w1,
but this also results in a synthetic appearance. Intermediate
scales also display artifacts in body composition. It should
be noted that the severity of this limitation generally de-
pends on factors such as prompt, seed, and pose. It can
work well in some contexts, e.g., the football player in Fig.
7 of the main paper, likely due to specific training biases of
Stable Diffusion.

B.6. Examples from Quantitative Evaluation

In Sections 4.2 and 4.3, we evaluated the fidelity and
SMPL accuracy metrics of various model configurations
and baseline models. We generated datasets using pose and
shape inputs for each method, using a fixed seed. In Figs. 7
and 8, we provide visual examples from our experiments.

Fig. 7 presents outputs generated from the pose and cap-
tion inputs from the MSCOCO [6] dataset. As the mod-
els are only conditioned on high-level semantic informa-
tion (text prompt, OpenPose pose map and SMPL param-
eters), the differences in visual content to the reference im-

ages (Fig. 7a) are expected and we are only interested in
comparing visual fidelity. We calculated visual fidelity in
terms of Kernel Inception Distance (KID) to measure the
overall distance of the dataset to the reference real-world
dataset [6]. As shown in the metrics, fine-tuning a Con-
trolNet with additional cross-attention blocks and without
domain adaptation (Fig. 7c) introduces a synthetic appear-
ance. In contrast, our guidance composition avoids domain
shift (Fig. 7d, e and g). Furthermore, it is evident that the
domain guidance network (Fig. 7f and h) controls the over-
all layout of the image, while our method introduces only
slight changes in the generated person. Fine-tuning only the
attention blocks (ft-attn) keeps the background more stable
compared to fine-tuning all blocks.

Fig. 8 shows outputs generated using the AIST [5]-
SURREAL [15] SMPL models (see Section 4.3). It is vis-
ible that our models adhere better to the shape. In some
cases, our ControlNet-guided (ft+CN) models also correct
wrong body orientations introduced by ControlNet, while
T2I-Adapter does not seem to suffer from this issue.
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(a) Frame 1 (b) Frame 4 (c) Frame 8 (d) Frame 12 (e) Frame 16

Figure 4. Frames from a SMPL-controlled AnimateDiff [1] clip, for slim (top row) and overweight (bottom row) body types.
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Figure 5. Varying guidance scales (w1, w2) in our proposed guidance composition: ϵSD(∅, co) + w1g⃗cp,co + w2g⃗cs,co .
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Figure 6. Limitation in Guidance Composition: The model struggles to reconcile conflicting information, such as obese SMPL-shape and
slim ballet dancer produced by the pose-conditioned ControlNet.
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(a) MSCOCO [6] (b) Pose (c) ft-extra-attn (d) ft-all+CN (e) ft-attn+CN (f) ControlNet (g) ft-attn+T2I (h) T2I-Adapter

Figure 7. Examples from the visual fidelity evaluation (Table 1, main paper). Our SMPL-finetuned (“ft-”) models receive the text, pose
and SMPL inputs, while the standard ControlNet and T2I-Adapter only receive the text and pose input. The text prompt and OpenPose
Keypoints are provided by the MSCOCO [6] dataset, while SMPL annotations are predicted using HierProbHuman [11].
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(a) Pose (b) SMPL (c) ft-all+CN (d) ft-attn+CN (e) ControlNet (f) ft-all+T2I (g) ft-attn+T2I (h) T2I-Adapter

Figure 8. Examples from the pose and shape accuracy evaluation (Table 2, main paper). Our SMPL-finetuned (“ft-”) models receive the
pose and SMPL inputs, while the standard ControlNet and T2I-Adapter only receive the pose input. The prompt for generating the entire
dataset was “A person in a clean studio environment”.
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