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The supplementary material is organized as follows:
Sec. A describes the data acquisition and the information
related to the release as announced in Sec.3 of the main pa-
per. Sec. B provides implementation details relative to the
reconstructions, the pose estimation, and the evaluation, as
announced in Sec. 4 of the main paper. Sec.C reports fur-
ther quantitative results that support the conclusions drawn
in Sec. 5 of the main paper.

A. Dataset

The proposed benchmark answers the question “To what
degree 3D models reconstructed by current 3D reconstruc-
tion algorithms can replace the CAD models commonly
used for object pose estimation?” To this end, we compare
the performance of two State-of-the-Art (SotA) object pose
estimators, FoundationPose and Megapose [15, 29], when
using the 3D reconstructed models against the use of classi-
cal CAD models. Thus, we mainly measure 3D reconstruc-
tion performance by the accuracy of the estimated poses
rather than the accuracy of the resulting 3D models itself.

The evaluation of the pose estimators runs on the clas-
sic YCB-V [30] pose estimation dataset and follows the
standard guidelines defined in the BOP benchmark [12,13].
The YCB-V dataset [30] is made of 21 objects (Fig. 2) se-
lected from the YCB dataset [5], including small objects,
objects with low texture, complex shapes, high reflectance,
and multiple symmetries. For each object, our benchmark
consists of two components: (1) Images of the object cap-
tured by a robot arm that can be used for 3D reconstruc-
tion. (2) A set of test images for object pose estimation
with ground truth poses registered with the image sets from
(1). Compared to the data for the first component, which we
captured ourselves, we use the test images provided by the
YCB-V [30] dataset for the second component. Given the
two components, we evaluate multiple state-of-the-art 3D
reconstruction methods.

*Equal Contribution.

Figure 1. Data Acquisition. The objects are mounted on a tri-
pod. A Basler Ace camera mounted on a 7DoF KUKA arm au-
tonomously captures views from all sides of the YCB-V [5, 30]
objects.

In this section, we describe how the images in (1) were
collected (Sec. A.1) and how the data is released (Sec. A.2).

A.1. Data Collection Setup

Data Acquisition. The images are collected with a Basler
Ace camera acA2440-20gc1 mounted on the flange of a
7 Degrees-of-Freedom (DoF) KUKA LBR IIWA 14 R820
(Fig. 1). The image resolution prior to undistortion is
2448x2048 pixels and the field of view covers the whole
object. The acquisition is done in an open-floor indoor en-
vironment exposed to neon lighting and varying sunlight
through ceiling-high windows, which is typical of daily
life and industrial scenarios. The camera exposure remains
fixed during the object’s scan.

The camera is calibrated using open-source solutions:
the OpenCV routine for the camera calibration [4] and the

1https://docs.baslerweb.com/aca2440-20gc



MoveIt [6] routine for the hand-eye calibration2. Afterward,
the camera can be positioned with an error of up to 5mm in
translation and 0.1◦ in rotation. The resulting camera cali-
bration is used to undistort the images using the open-source
COLMAP [24] library. The camera poses obtained from the
kinematic chain of the robot are later refined with an offline
optimization (see the paragraph ‘Pose refinement’ below).

The objects are positioned on a tripod such that the cen-
troid of the object is approximately at the center of the
reachability domain of the robot. For each object, dense
outside-in views are captured by positioning the camera on
a sphere centered on the object’s centroid and with a ra-
dius ∼30cm. The positions are evenly distributed on the
sphere with latitude and longitude spanning over [0◦,150◦]
and [0◦,360◦] respectively, with intervals of 10◦. The low-
est camera position at latitude 150◦ allows to capture views
of the objects from all sides. Since the object is a source of
collisions, the number of reachable views varies depending
on the object’s shape and size. The number of images per
object varies between 397 and 505 images with an average
of 480. The motion planning and the collision avoidance are
operated with the proprietary IIWA stack [11] and the open-
source MoveIt [6] framework using the CHOMP planning
algorithm [21].

Image Registration. The YCB-V dataset [30] provides
test images depicting the objects and their ground-truth
poses. These poses are the rotation and the translation be-
tween the camera coordinate frame and the object’s coor-
dinate frame, which is the coordinate frame of the origi-
nal CAD model. This coordinate frame is different from
the ‘world’ coordinate frame where we collect the images
and reconstruct the objects. Thus, the YCB-V ground-truth
poses are not compatible with the coordinate frame of the
3D reconstructions. Consequently, we register the collected
images to the original CAD model for each object. To do
so, we first generate 3D reconstructions for all objects in
their coordinate frame with COLMAP [24] then estimate
the rigid transform between the reconstruction’s coordinate
frame and the CAD model’s coordinate frame with Itera-
tive Closest Point (ICP) [3, 36]. The ICP is initialized with
user-defined coarse alignments.

Pose Refinement. The camera extrinsics of the collected
images are obtained from the kinematic chain of the robot
that can be relatively noisy. One source of such noise is
in the robotic arm’s positional encoders: they are known
to be noisier in configurations that are close to degenerate,
e.g., when the arm is extended. This can affect the qual-
ity of the reconstruction methods so we refine the camera
extrinsics in two steps: i) we use sequentially the pose re-
finement capabilities of iNGP [19] that update the poses
consistently with the trained 3D reconstruction; ii) we then

2https://github.com/ros-planning/moveit calibration

use the iNGP-refined poses to generate a sparse 3D recon-
struction and refine the camera poses again with bundle ad-
justment using COLMAP [24]. After this step, the camera
extrinsics remain fixed. Although some evaluated methods
have pose refinement capabilities, we turn them off so that
all reconstruction methods share the same coordinate frame.
Without this, the reconstruction’s coordinate frames may be
slightly different for each method depending on the ampli-
tude of the pose refinement, which would introduce incon-
sistencies in the evaluation.

Object masks. Once the images are registered with the
original YCB-V [30]’s mesh, we generate object masks by
projecting the mesh onto the image. We sample a dense set
of points on the mesh and project them on the image using
the intrinsics and the registered extrinsics. The pixels where
the projected points fall form the object’s mask.

Subset Generation. In addition to the full set of captured
images, we define image sets of different sizes as, in certain
applications, data capture and 3D reconstruction times can
be important. Providing smaller subsets of images allows us
to simulate such scenarios. We provide subsets of the fol-
lowing sizes: 25, 50, 75, 100, 150, and 300. The subsets are
generated from the full set of images with Fibonacci sam-
pling [10] to ensure that the subset views cover the object
uniformly.

A.2. Data Release

The released data is available on the project’s website:

reconstruction pose benchmark

The webpage contains instructions on how to download the
data from an Apache server, either through a web page or a
simple command line tool, e.g., wget.

Released Data and Format. We release the calibrated
undistorted images of the 21 YCB-V [30] objects collected
in Sec. A.1, the objects’ masks, and the meshes generated
by the reconstruction methods evaluated in the benchmark.

For each object, the undistorted images, their extrin-
sics, the camera intrinsics, and the object masks are packed
in a single zip file. The images and the masks are in
png format, the extrinsics and intrinsics are released under
both the Nerfstudio [26] camera pose convention3 and the
COLMAP [24] camera pose convention4. These are two of
the most commonly used camera pose conventions for 3D
reconstruction. Dataparsers for these two formats are avail-
able at the respective repositories.

For each reconstruction method, a single zip file contains
all reconstructed objects. The 3D reconstructions are saved

3docs.nerf.studio/quickstart/data conventions.html
4colmap.github.io/format.html#text-format

https://github.com/VarunBurde/reconstruction_pose_benchmark


01-master-chef-can 02-cracker-box 03-sugar-box 04-tomato-soup-can 05-mustard-bottle 06-tuna-fish-can 07-pudding-box

08-gelatin-box 09-potted-meat-can 10-banana 11-pitcher-base 12-bleach-cleanser 13-bowl 14-mug

15-power-drill 16-wood-block 17-scissors 18-large-marker 19-large-clamp 20-extra-large-clamp 21-foam-brick

Figure 2. The 21 YCB-V [5, 30] objects rendered from original CAD models.

under the standard obj format usually used by 3D process-
ing libraries, e.g., Meshlab [7], Open3D [36], trimesh [8],
and Pytorch3D [22].

License. The collected images and the reconstructed
meshes are released under the CC BY 4.0 license: the li-
cense is conditioned on the license of the YCB [5] objects
depicted in the images. The YCB objects are released under
the Creative Commons Attribution 4.0 International (CC
BY 4.0) 5 so the data is released under the same license.

Benchmark Reproducibility. The benchmark uses open-
source code for the reconstructions, the pose estimation, and
the evaluation. The only exception may be the code of the
reconstruction method RealityCapture [23], which is free
except for companies with high earnings6. Unless men-
tioned otherwise in Sec.B1, the default parameters of the
reconstruction methods are used.

B. Evaluation Setup

Compared to existing benchmarks for 3D reconstruction,
our benchmark does not treat 3D reconstruction as a task
unto itself but rather evaluates the resulting 3D models in-
side a higher-level task, i.e., object pose estimation. Thus,
we mainly measure 3D reconstruction performance by the
accuracy of the estimated poses rather than the accuracy of
the resulting 3D models itself. To this end, we compare the
performance of two SotA object pose estimators [15, 29]
when using the 3D reconstructed models against the use of
classical CAD models.

5http://ycb-benchmarks.s3-website-us-east-1.amazonaws.com/
6https://www.capturingreality.com/pricing-changes

In the rest of this section, we report the implemen-
tation details relative to the evaluated 3D reconstructions
(Sec B.1), the pose estimators used for the evaluation
(Sec B.2), the pose evaluation metrics (Sec. B.3), and the
nature of the objects in the evaluation dataset (Sec B.4).

B.1. Reconstruction Implementation Details

We describe the experimental setup related to the 3D re-
construction.

Colmap [24, 25]. We use the default parameters of
COLMAP’s triangulation [24, 25], which are already op-
timized for the purpose of reconstruction. The feature ex-
traction returns RootSIFT [2, 18] features and the feature
matching runs only between covisible image pairs: two im-
ages are covisible if they form an angle smaller than 45◦

with respect to the object’s center. Before the Poisson [14]
mesh reconstruction, we filter out the room’s background by
roughly cropping the dense point cloud around the object.
We run the Poisson surface reconstruction with parameters
depth=10, trim=1.

Reality Capture [23]. Given the known camera extrinsics
and intrinsics, we first obtain a sparse point cloud model
using the ”draft” mode, which downsamples the images by
a factor of two. For the following processing steps, a re-
construction region is defined as a bounding box (roughly)
around the camera positions. All scene parts outside the
region are ignored. A 3D mesh is then computed for this
region in ”normal detail”, which also uses images down-
sampled by a factor of two. This reconstruction stage first
computes depth maps to obtain a dense point cloud, from
which a mesh is then extracted. Typically, there are artifacts



in the form of additional connected components. We only
keep the largest connected component, which in all cases
corresponded to (parts of) the object. The remaining mesh
is then textured.

Implicit Methods. Nerfacto [26] is trained for 30K it-
erations without pose refinement, with normal prediction,
and with the default parameters set by Nerfstudio [26].
iNGP [19] is trained with the default parameters set by
the authors for 30K iterations. A mesh is extracted from
the resulting models using the Poisson surface reconstruc-
tion [14].

MonoSDF [34], VolSDF [31], BakedSDF [32], and
Neus [28] are trained with the default configuration set
in SdfStudio [33], NeuralAngelo [16] and Plenoxel [9]
with the configurations set by the authors. VolSDF and
Neus are trained for 100k steps, MonoSDF for 200k it-
erations, BakedSDF for 250k iterations, NeuralAngelo for
500K iterations, and Plexoxel for 128K iterations, as recom-
mended by their respective authors. These methods output
an Signed Distance Function (SDF) from which the mesh is
extracted using the marching cube algorithm [17] with SDF
values sampled on a 1024x1024x1024 grid and a subsam-
pling factor of 8. The NeuralAngelo [16] mesh is extracted
with a 2048-resolution grid, and the Plexoxel [9] one with
a 256-resolution grid, as recommended by their respective
authors. For all methods, the SDF is initialized with a unit
sphere. The same setup is adopted for Unisurf [20], except
that it outputs an occupancy grid instead of an SDF.

iNGP [19] implicit rendering. In addition to evaluating
the mesh derived with iNGP [19], we also evaluate how
well the novel view synthesis of iNGP can replace the ren-
dering of CAD models for pose estimation. We used the
default settings of the iNGP renderer, except for the num-
ber of samples per pixel that is decreased to 1. We edit
the Megapose [15] codebase to replace the CAD renderings
with the iNGP implicit renderings.

Hardware. To provide fair runtime comparisons, all recon-
struction methods are run on a single NVIDIA A100 GPU,
32x Intel Xeon-SC 8628, 24 cores, 2,9 GHz with 256GB of
RAM.

One exception though is for RealityCapture [23] that
runs on a GeForce RTX 3060 with 12 GB of RAM, i.e., a
weaker GPU than the other methods. This exception is be-
cause RealityCapture required a Windows installation that
we had available only on a machine equipped with GeForce.

B.2. Pose Estimators: FoundationPose and Mega-
pose

We recall how the two pose estimators used in the evalu-
ation operate and refer the reader to their respective papers
for more details.

FoundationPose [29]7 is a generalizable render-and-
compare pose estimator that takes as input an RGBD image
with an object of interest and a 3D representation of that
object to output a pose.

The pose estimation proceeds in 2 steps: it first gener-
ates a set of pose hypotheses all around the object that are
later refined by a network. This refinement network is given
both the RGBD test image and the RGBD renderings from
the pose hypotheses generated with the 3D representation.
A second network then ranks the refined pose hypotheses
using the RGBD test image and the RGBD rendering pro-
duced from the refined poses. The best-ranked pose is the
final output.

One of the main contributions of FoundationPose is that
the 3D representation can take two forms as long as color
and depth renderings can be generated from it: a traditional
CAD model or an implicit representation. The pose estima-
tion is agnostic to the 3D representation as it only uses the
RGBD renderings. Also, it is jointly trained with render-
ings from the CAD models and the implicit representations,
which reduces any possible distribution shift between the
two types of renderings.

Whenever the 3D representation of the object at hand is
not available, FoundationPose generates a 3D implicit rep-
resentation of the object at test time. Thus FoundationPose
can be deployed on any object even when the 3D represen-
tation is not known beforehand, which reflects the practical
conditions in which pose estimators are deployed.

The 3D implicit model can generate RGBD renderings
in two ways: either with novel-view synthesis directly or by
first extracting a mesh out of the implicit representation and
then rastering the mesh. The latter is computationally more
efficient, as observed by the FoundationPose authors [29].
We adopt a similar derivation where we extract a mesh out
of the evaluated implicit 3D reconstruction methods to pro-
duce RGBD renderings.

Megapose [15]8 is a also generalizable render-and-compare
pose estimator that takes as input an RGB image depicting
an object and a 3D model of that object and outputs the
pose of the object. Megapose is made of two modules: a
coarse pose estimator and a pose refiner. Given a test image
cropped around the object, the coarse module generates n
pose hypothesis all around the objects from which render-
ings are generated. The concatenation of the test image and
the renderings are fed to a classification network which log-
its are interpreted as a score for each pose hypothesis. The
top-K coarse poses are kept and refined: for each coarse
pose, the refiner renders the object’s mesh from that coarse
pose and from three additional views. The views aim at
creating parallax and are generated by moving the camera
laterally while ensuring that the camera-z axis goes through

7https://github.com/NVlabs/FoundationPose
8https://github.com/megapose6d/megapose6d



the object’s centroid. The refiner network is a regression
network that takes as input the test image and the four ren-
ders defined previously and outputs a pose update to apply
to the coarse pose. The final pose is the composition of the
coarse pose with the pose update. This final pose can also
be refined by repeating the refinement step. We adopt the
author’s recommendation and set the number of refinement
iterations to 5. We feed the coarse module with the maxi-
mal number of initial pose hypothesis n = 576 and we keep
the top-1 coarse pose, i.e., setting K = 1, since we observe
marginal improvement with K = 5 (see Fig. 3) and it runs
faster.

Before being fed to the network, the image is cropped
around the object of interest. One can either use a box de-
tector or the ground-truth box to define the region of interest
and we use the latter for both Megapose and FoudationPose.

B.3. BOP Evaluation

As is custom for object pose estimation, we report
the three standard pose errors defined in the BOP bench-
mark [12, 13]. The metrics reported are the Visible Sur-
face Discrepancy (VSD), the Maximum Symmetry-Aware
Surface Distance (MSSD), and the Maximum Symmetry-
Aware Projection Distance (MSPD). We refer the reader to
the well-documented BOP benchmark methodology for de-
tails9. We recall the definitions here for the sake of com-
pleteness. Note that all these errors measure the pose
error, hence the lower, the better.

The Maximum Symmetry-Aware Surface Distance
(MSSD) measures the maximum surface misalignment be-
tween the surface of the object when it is positioned with
the ground-truth pose and when it is positioned with the es-
timated pose. In both cases, the object is positioned with
respect to the camera coordinate frame. As indicated in the
name, the MSSD is symmetry-aware, i.e., it does not pe-
nalize the estimated pose for ambiguous symmetries (e.g. a
textureless sphere has an infinite number of non-resolvable
symmetries). Derivation details: Let M be the CAD ob-
ject model, P̂ the estimated pose, P̄ the ground-truth pose,
VM a set of points sampled on the reference CAD model M
(i.e. the YCB-V [5, 30] one), SM the set of symmetries of
the object. The MSSD is computed as:

eMSSD(P̂, P̄, SM , VM ) =

minS∈SM
maxx∈VM

∥P̂x− P̄Sx∥2 .

The metric is computed over the set of points VM sampled
on the reference mesh positioned with the ground-truth pose
and with the estimated pose. Corresponding points form
pairs between which the distance is computed. The MSSD
reports the maximum distance over all pairs. To account for

9https://bop.felk.cvut.cz/challenges/bop-challenge-
2019/#evaluationmethodology

symmetries, the derivation computes several distances for
each pair of points where the ground-truth point is addition-
ally transformed with an isometry to account for the sym-
metry (minS∈SM

). The actual distance between two points
in the minimum over all symmetries. The symmetries are
provided by the evaluation dataset as annotations. Inter-
pretation: as an upper bound on the surface misalignment,
the MSSD is very sensitive as even a small pose error can
induce high surface discrepancies around high-curvature re-
gions of the object. In practice, such high-curvature regions
are suitable grasping points for robotic manipulation, so
a high AR-MSSD (Average Recall-MSSD, see below) sug-
gests that the object pose estimation is suitable for robotic
grasping.

The Maximum Symmetry-Aware Projection Distance
(MSPD) measures the maximum pixel displacement in-
duced by an inaccurate pose estimate when rendering the
object. Derivation details: The notation is the same as for
the MSSD metric. Let M be the CAD object model, P̂ the
estimated pose, P̄ the ground-truth pose, VM a set of points
sampled on the reference CAD model M (i.e. the YCB-
V [5, 30] one), and SM the set of symmetries of the object.
The MSPD is computed as:

eMSPD(P̂, P̄, SM , VM ) =

minS∈SM
maxx∈VM

∥proj(P̂x)− proj(P̄Sx)∥2 .

As for the MSSD, the metric is computed on the set of
points VM sampled on the reference CAD model when it
is positioned with the ground-truth pose and with the esti-
mated poses, respectively. The points are projected onto the
image plane and the MSPD reports the maximum distance
between the projected points over all pairs. Interpretation:
Note that the projective nature of the MSPD makes it unsuit-
able for applications that require physical interactions with
the world. Instead, this perceptual error is better suited for
vision applications such as Augmented and Virtual Real-
ity that exploit the rendering of positioned objects.

The Visible Surface Discrepancy (VSD) measures the
average misalignment of the visible surface of the object
along the camera-z axis. Derivation details: Let V̂ and V̄
be visibility masks, i.e., the set of pixels where the reference
model M is visible in the image when the model is posi-
tioned at the estimated pose P̂ and the ground-truth pose P̄ .
Let D̂ and D̄ be the distance maps obtained by rendering the
reference object model M in the estimated pose P̂ and the
ground-truth pose P̄ , respectively. The VSD is computed
as:

eVSD(D̂, D̄, V̂ , V̄ , τ) = avgpϵV̂ ∪V̄{
0 if p ∈ V̂ ∩ V̄ ∧ ∥D̂(p)− D̄(p)∥ ≤ τ

1 otherwise
.
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Figure 3. Megapose Parameter Tuning: comparison of the pose performance when keeping the top-1 (uniform bar) and top-5 (crossed
bar) pose hypothesis for pose refinement. The experiment runs on two of the best-performing reconstruction methods RealityCapture [23]
and Nerfacto [26]. The results show that using a higher number of coarse hypotheses marginally improves the scores for RealityCapture
(+3%) and barely affects Nerfacto.

Category Objects

Lambertian-Textured-Large 02-cracker-box, 03-sugar-box, 16-wooden-block

Lambertian-Textured-Small 07-pudding-box, 08-gelatin-box, 18-large-marker

Shiny-Textured 01-master-chef-can, 04-tomato-soup-can, 06-tuna-fish-can, 09-potted-meat-
can,13-bowl, 14-mug

Uniform-Texture 10-banana, 11-pitcher-base, 17-scissors, 19-large-clamp, 20-extra-large-clamp,
21-foam-brick

Low-Texture 05-mustard-bottle, 12-bleach-cleanser

Scissors-Like 17-scissors, 19-large-clamp, 20-extra-large-clamp

Legacy-Objects 03-sugar-box, 04-tomato-soup-can, 10-banana, 12-bleach-cleaner, 13-bowl,
14-mug, 16-wooden-block, 17-scissors, 18-large-marker, 19-large-clamp, 20-
extra-large-clamp, 21-foam-brick

Updated-Objects 01-master-chef-can, 02-cracker-box, 05-mustard-bottle, 06-tuna-fish-can, 07-
pudding-box, 08-gelatin-box, 09-potted-meat-can, 11-pitcher-base, 15-power-
drill

Table 1. Object Categories. The categories are characteristic of object properties such as size, shape, texture, and materials. We also
distinguish between the objects that are the same between the YCB-V datasets [5, 30] and our data collection (‘legacy’) and the ones that
got updated by their manufacturer (’updated’).

The VSD is also a perceptual metric but the definition of
the distance is slightly different. It measures a distance in
3D but contrary to the MSSD, it does not measure it be-
tween the corresponding points sampled on the mesh. In-
stead, the pairs are formed by taking a visible point from
each mesh that projects onto the same pixel. In practice,
the CAD model is rendered from the two poses to gener-
ate distance maps (i.e., depth maps) and the VSD corre-
sponds to the average number of misplaced rendered pixels.
Misplacement can either mean an incorrect distance map
value or an incorrect position in the image, e.g., if the esti-
mated pose translates the object too much in the camera-x
or camera-y directions, the rendered pixels will be disjoint
on the image space. Interpretation: a low VSD indicates
that the object is well positioned, yet can miss to report er-

rors in the estimated pose’s rotation. If the object is mostly
symmetric, a low VSD can indicate that the centroid of the
object is well estimated but it provides less information on
the rotation’s error. For example, take the 14-mug object
and assume that the estimated pose is the ground-truth pose
flipped so that the mug is upside-down. Then the position of
the CAD models positioned with the ground-truth pose and
the estimated pose differ only on the side in which the 14-
mug handle is. Instead, the surface of the 14-mug’s ”body”
will be aligned. Thus, the distance maps of these points will
be mostly equal and will dominate the metric, indicating a
good position. Thus, the VSD is better suited for applica-
tions with tolerance to such edge-cases such as robotic
navigation.

Throughout the evaluation, the metrics are derived



on the same model M which is the original CAD model
provided in the YCB-V [5, 30] dataset, i.e., the recon-
structed meshes are not used when computing the met-
rics. This ensures that the results for poses obtained from
different meshes are comparable.

Note that the BOP benchmark does not report these er-
rors as is but reports the Average Recall (AR) on these
errors. Given an error threshold, the recall is the fraction
of the estimated poses for which the error falls below the
threshold. Since these metrics quantify the pose error,
the lower, the better. The recall is computed separately
over each metric and as usual for recalls, the higher is bet-
ter. The Average Recall (AR) for a given metric, which we
report as AR-VSD, AR-MSPD, AR-MSSD, is the average
of several recalls computed over a range of error thresholds.
Finally, we also report the global average recall AR com-
puted as the average of the three average recalls AR-VSD,
AR-MSPD, AR-MSSD. As specified in the BOP bench-
mark, it measures a method’s overall performance.

The recall averaging used in the benchmark slightly dif-
fers from the averaging of the BOP benchmark. Instead
of averaging the metrics over the set of all test images, we
averaged the recall over the test images depicting a given
object instance (e.g. 02-cracker-box) to output the object-
specific AR-MSPD, AR-MSSD, AR-VSD, AR. The global
performance of the method is the average of these metrics
over the set of objects. The performance of the methods of
specific object categories is the average of the subset of ob-
jects that make that category. Because of the change in the
averaging order, the metrics we report can be slightly lower
than the ones reported in the BOP benchmark by about 5%
on average. This edit is not critical as we are interested in
the relative pose performances rather than the absolute ones.

B.4. Object Categorization

We split the YCB-V objects into categories with specific
properties depending on their size, their texture and their
materials (Tab. 1).

Lambertian-Textured-Large / Small refers to large /
small objects strongly textured, with diffuse reflections.

Shiny-Textured objects are medium and small objects
which material has high reflectivity.

Uniform-Texture objects have no texture, i.e., they
are color-uniform whereas Low-texture objects have both
high-texture areas and textureless areas.

Scissors-like: Objects with scissors-like shapes that may
have holes inside the mesh and have symmetries from dif-
ferent views.

Updated Objects: The YCB-V [30] are made of ob-
jects commonly found in grocery stores. However, brands
regularly update their product packaging, which means that
the object’s texture gets updated. Some of the original
YCB-V [30] objects are not available on the market any-

more so we use the alternatives suggested by the official
YCB [5] website10. The newer versions of the objects dif-
fer in texture and scale, with an average change estimated
at 4% of the object’s dimensions. As for the texture update,
the 01-master-chef-can, 11-pitcher-base, and 15-power-drill
underwent full texture updates and other objects have only
minor updates.

Legacy Objects are the objects that are the same be-
tween the YCB-V [30] dataset and our data collection, i.e.,
all objects minus the updated objects.

C. Additional Results
We report the quantitative results that support the con-

clusions drawn in the main paper and that could not fit due
to the page limit: the average recall on each of the three
pose errors (Sec. C.1), the influence of the size of the train-
ing data on the performance (Sec. C.2), further results on
the relation between the object categories and the pose per-
formance (Sec. C.3), the importance of the texture for pose
estimation (Sec C.4), the detail of the pose performances
per objects (Sec C.5), and qualitative results showing ren-
derings from the reconstructed meshes (Sec C.6).

C.1. Pose Evaluation: Average Recall

The BOP benchmark defines multiple errors relevant to
assess how suitable a reconstruction is for a given applica-
tion such as augmented and virtual reality (MSPD), naviga-
tion (VSD), and object manipulation (MSSD) [1, 12, 13].
In the main paper, the pose performances are measured
with the Average Recall (AR) averaged over all three VSD,
MSSD, and MSPD errors We now report the AR for each
error separately (Fig. 4) to support the conclusions of the
main paper (Sec.5 ”Finer Pose Evaluation”).

The performance gap between Megapose [15] and Foun-
dationPose [29] when they are evaluated with the original
CAD models is relatively smaller for the MSPD than for
the other errors. One interpretation is the improvement of
FoundationPose over Megapose is particularly useful for 3D
spatial tasks, as measured by the VSD and the MSSD, e.g.,
for navigation and object manipulation. The improvement
is smaller for tasks involving object rendering for which
Megapose is close to FoundationPose.

The main paper mentions the performance drop induced
when replacing the original CAD models with the recon-
structed ones and how it is consitent between the two pose
estimators for the best reconstruction methods, i.e., Reality-
Capture [23], Nerfacto [26], VolSDF [31], MonoSDF [34],
BakedSDF [32], and NeuralAngelo [16]. This remains the
case for the individual ARs and we also observe that the rel-
ative performances of the reconstruction methods are con-
sistent across the different errors. So one can expect that im-

10https://www.ycbbenchmarks.com/object-set/
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Figure 4. Detailed Pose Evaluation of the 3D reconstructions. We measure the performance of FoundationPose [29] (uniform bar) and
Megapose [15] (lined bar) when replacing the CAD models with the 3D reconstructions. The blue lines indicate the performance of the
pose estimators when using the original CAD models (FoundationPose: full line, Megapose: dashed line). Overall, a gap remains between
CAD models and 3D reconstructions for pose estimation. This gap is smaller on the VSD, which indicates that 3D reconstructions can be
suitable for pose estimation in applications with tolerance to pose errors.

proving the 3D reconstructions might benefit all three pose
estimation errors, hence various applications involving ob-
ject pose estimation.

One interesting observation is the gap between the orig-
inal CAD models and the best reconstruction methods is
relatively small on the VSD compared to the other errors.
The VSD indicates that the object is overall well positioned
so this suggests that 3D reconstructions can be suitable re-
placements for the CAD model when the pose estimator is
used in tasks that are tolerant to the pose errors, e.g., visual
navigation. However, the gaps on the MSSD and MSPD
remain large so there is room for improvement for 3D re-
constructions to replace CAD models in tasks with low tol-
erance in the pose errors, e.g., object manipulation.

C.2. Reconstruction with varying training size

Besides the quality of the pose estimation, an impor-
tant property of the reconstruction methods is their data re-
quirement. To evaluate the ‘data-greediness’ of the recon-
struction methods, we reconstruct the YCB-V [30] objects
from subsets of images sampled uniformly around the ob-
ject [10]. Fig. 5 complete the results in the main paper with
the pose performance of FoundationPose [29] with recon-

structions from image subsets and the 3D reconstruction’s
geometric accuracy.

As for Megapose [15], the performance of Foundation-
Pose [29] improves as more images are used for the 3D
reconstruction (top-left). Nerfacto [26] plateaus with only
75-100 images and the performance of RealityCapture [23]
remains relatively stable as the number of images decreases
to 25. This further demonstrates the practical advantage of
RealityCapture that is both fast and data-efficient over other
reconstruction methods: the reconstruction takes less than 1
min. on 25 images and ∼2 min. on 50 images. Still, there
remains a gap between the 3D reconstructions and the orig-
inal CAD models for pose estimation that calls for further
improvements in 3D reconstruction.

We observe that FoundationPose [29] seems more
resilient to innacurate 3D reconstructions than Mega-
pose [15]. For example, the geometric quality of Ner-
facto [26] drops slightly at 150 images which is reflected
in the Megapose performance but not in the Foundation-
Pose ones. A similar observation holds for BakedSDF [32]
at 100 and 150 images.
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Figure 5. Pose Evaluation of the 3D reconstructions from subsets of images. Top: We measure the performance of FoundationPose [29]
and Megapose [15] when replacing the CAD models with the 3D reconstructions generated from image sets of varying size. The blue lines
indicate the performance of the pose estimators when using the original CAD models (FoundationPose: full line, Megapose: dashed
line). As expected, the more data the better the results and 75-100 images are enough to get reasonable reconstructions. The performance
of Reality Capture [23] is relatively stable as the number of images decreases: the reconstruction from 50 images takes as little as
2 minutes and is already close to the best RealityCapture performance. Bottom: Evaluation of the reconstructed geometry with the
traditional completeness and accuracy metrics.

C.3. Object Categories

We split the YCB-V [30] objects into 8 groups defined
in Sec. B.4 based on their shape, texture, material proper-
ties, and the degree of change between the collected objects
and the original ones. We report results for all object cate-
gories in Fig. 6 (including the 3 reported in the main paper)
and observe that the relative pose performance across object
categories is telling of some of the current challenges in 3D
reconstruction.

The variation in pose performance is relatively large be-
tween the most simple categories and the most challeng-
ing ones. Simple object categories include large objects
with Lambertian texture and objects with little or uniform
texture. For these objects, replacing the CAD model with
the 3D reconstructions has little or no impact on the per-
formances. We also note that some of the reconstruc-

tion methods that perform relatively lower than others, e.g.
Neus [28], NeuralAngelo [16], achieve very good results on
some of the simple object categories. Another interesting
result is the high performance of the MVS-based Reality-
Capture [23] on objects with little texture: one could have
expected lower results since MVS relies on feature match-
ing which accuracy usually drops when the image content
exhibits little texture.

As mentioned in the main paper, the most challenging
object categories are small textured objects and objects with
a ‘shiny’ texture, i.e., a texture with high reflectance. For
these categories, the performance bottleneck often lies in
the texture. The resolution of small reconstructed objects
is relatively lower than for larger objects and that loss of
information can impede the pose estimation. As for shiny
objects, the reflection of light sources on the object during
the data collection can cause visual discrepancies between



the reconstruction and the object in the test images.
Since the YCB-V dataset [5,30] is made of objects com-

monly found in grocery stores, whenever a brand updates
its packaging, the texture gets updated. The YCB-V objects
we captured hence fall into two categories: the ‘legacy’ ob-
jects which texture did not change and the ‘updated’ ob-
jects which texture has changed. Only the coffee box ‘01-
master-chef-can’, the ’11-pitcher-base, and the ’15-power-
drill’ have undergone a full texture update and the other
objects have undergone relatively minor updates. Still, the
gap between the 3D reconstructions and the CAD models
is lower on the ‘legacy’ objects than the ‘updated ones’.
BakedSDF [32] is even on par with the original CAD mod-
els with Megapose [15]. There still remains a gap between
3D reconstructions and CAD models though. Note that the
integration of a given 3D reconstruction with Foundation-
Pose [29] often outperforms or is on par with Megapose [15]
running with the original CAD model: this suggests that the
gap between CAD models and 3D reconstructions could be
closed not only by improving 3D reconstructions but also
pose estimators.

C.4. Influence of the Texturing Algorithm

Previously, we observed that the performance of the
pose estimation drops on small objects or shiny objects
and we argued that the performance bottleneck lies in the
texturing. So we now analyze the influence of the tex-
ture on pose estimation (Fig. 7). In the first experiment,
we compare the pose performance of the 3D reconstruc-
tions with and without texture. A second experiment
assesses the influence of the texturing algorithm by com-
paring the 3D reconstruction with native texturing and
MVS-texturing [27]. These reconstructions are compared
to the original CAD models with texture (dashed blue line)
and without texture (dotted blue line).

We run this ablation on Megapose [15] with a subset of
methods: Nerfacto [26], VolSDF [31], MonoSDF [34] and
BakedSDF [32], the colored but textureless reconstructions
from COLMAP [24, 25], Neus [28] and UniSURF [20].

We compare the reconstructions under three texturings:
the texturing native to each reconstruction method, no tex-
turing at all, and texturing with the MVS-texturing algo-
rithm [27]. Note that COLMAP does not texture the models
but only provides vertex colors so for COLMAP we com-
pare the mesh colored with the point cloud colors, the col-
orless mesh, and the mesh textured with MVS-texturing.
Native texturing refers to the texturing algorithm as imple-
mented in NerfStudio [26] and SDFStudio [33]: the UV
map is generated by querying the network for the color at
the position of the mesh’s faces. The textureless mesh has
exactly the same geometry as the textured one but with-
out the texture map and with no color. Finally, the MVS-
textured mesh is the output of the MVS-texturing algo-

rithm [27] run on the geometry of the reconstructed mesh.

With vs. Without Texture (circles). For all object cate-
gories, the gap between the textureless CAD model (dotted
line) and the textureless reconstruction (circle bars) is rel-
atively small or non-existent. This is the case even for the
object categories that are the most challenging under the
regular pose evaluation (small and shiny), which supports
the assumption that the performance bottleneck for these
categories is the texture. This suggests that the geometric
quality of the 3D reconstructions and the CAD models are
comparable as measured by pose estimation performance.
This is in line with the results obtained with traditional geo-
metric evaluation of the 3D reconstructions measured with
the completeness and accuracy metrics.

When the texture is removed, whether from the CAD
models or the 3D reconstructions, the pose performance
drops less for objects with low or uniform texture than for
textured objects. A reasonable explanation is that the pose
estimation relies more on the geometry than on the texture
for objects with little texture information. Hence, the ab-
sence of texture or even incorrect texturing may not be pro-
hibitive for pose estimation on such objects as long as the
reconstructed geometry is good enough.

Native vs. MVS-Texturing. The texturing native to each
method (uniform bar) leads to either comparable or better
results than MVS-texturing [27] (crossed bar). Even the tex-
tureless but colored meshes of COLMAP [24, 25] leads to
better pose performance than with the MVS-texturing. This
may appear counter-intuitive since MVS-Texturing [27]
produces sharper and more visually appealing textures (see
Fig. 8-right). However, render-and-compare methods usu-
ally operate on low-resolution renderings so that they can be
fed efficiently to the network, so the lower resolution of the
native texturing is not penalized. Also, MVS-Texturing [27]
can generate strong color artifacts, such as color saturation
or color mismatch that decrease the texture’s quality (see
the green tint as shown in Fig. 8-right). That could be due
to multiple reasons: noise in the camera pose which leads
to blurred texture (Fig. 8-left), the surface extracted from
SDFs may not been extracted with the optimum isosurface
value, or MVS-Texturing can not handle well reflections.

C.5. Per-Object Pose Evaluation

We report the pose performances separately for each
YCB-V object [5, 30], 3D reconstruction, and pose estima-
tors in Fig. 9 and Fig. 10. The results are consistent with the
previous conclusions that the most challenging objects are
the small ones or shiny ones, e.g., 06-tuna-fish-can or the
18-large-marker.

As observed previously, the combination of Foundation-
Pose [29] and the 3D reconstructions is often better than
Megapose [15] with the original CAD models, e.g., 02-
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Figure 6. Pose Evaluation of the 3D reconstructions for various Object Categories. We measure the performance of Foundation-
Pose [29] (uniform bar) and Megapose [15] (lined bar) when replacing the CAD models with the 3D reconstructions. The blue lines
indicate the performance of the pose estimators when using the original CAD models (FoundationPose: full line, Megapose: dashed line).
Some categories we expected to be challenging, such as objects with uniform texture are not. Instead, the most difficult categories are
small and shiny objects.

cracker-box, 10-banana. This suggests that bridging the gap
between 3D reconstructions and CAD models for pose es-
timations has two directions for improvements: improving
the 3D reconstruction itself and improving pose estimators.

C.6. Qualitative Results

The SSIM, PSNR, and LPIPS [35] metrics are evalu-
ated by comparing the rendering of the CAD model and the
masked YCB-V images, as illustrated in Figure 11. We re-
port the average values across all test images.

The 3D reconstructions are displayed in Figure 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32. Each figure showcases the object’s recon-
structions, the pose performances and the texture quality for
various reconstruction methods.
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Figure 8. Examples of texturing artifacts generated with MVS-
texturing [27]. Left: Illustration of MVS-Texturing mirage arti-
fact. The text in the 03-sugar-box is distorted and repeated. We
also observe color saturation on the blue separation line between
the top of the box and the bottom. Right: Illustration of the MVS-
Texturing color artifacts. The top of the 02-cracker-box on the left
(COLMAP + MVS-Texturing) exhibit green areas that do not exist
in the original model and are not produced by native texturing of
other methods (e.g. Nerfacto on the right).
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Figure 9. Pose Evaluation of the 3D reconstructions for each YCB-V object [30] (1/2). The 3D reconstructions are evaluated based
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pose estimator can compensate for some of the limitations of the 3D reconstruction: for example, FoundationPose [29] induces a strong
boost on 07-pudding-box compared to Megapose [15].
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Figure 11. Methodology for evaluating SSIM, PSNR, and LPIPS metrics. On the left is the test YCB-V image, in the middle is the masked
YCB-V object, and on the right is the rendering of the reconstructed mesh overlay on the masked image.



Figure 12. Pose performance and texture scores (left) and object renderings (right) of 01-master-chef-can reconstructed with various
reconstructed methods.



Figure 13. Pose performance and texture scores (left) and object renderings (right) of 02-cracker-box reconstructed with various recon-
structed methods.



Figure 14. Pose performance and texture scores (left) and object renderings (right) of 03-sugar-box reconstructed with various reconstructed
methods.



Figure 15. Pose performance and texture scores (left) and object renderings (right) of 04-tomatoe-soup-can reconstructed with various
reconstructed methods.



Figure 16. Pose performance and texture scores (left) and object renderings (right) of 05-mustard-bottle reconstructed with various recon-
structed methods.



Figure 17. Pose performance and texture scores (left) and object renderings (right) of 06-tuna-fish-can reconstructed with various recon-
structed methods.



Figure 18. Pose performance and texture scores (left) and object renderings (right) of 07-pudding-box reconstructed with various recon-
structed methods.



Figure 19. Pose performance and texture scores (left) and object renderings (right) of 08-gelatin-box reconstructed with various recon-
structed methods.



Figure 20. Pose performance and texture scores (left) and object renderings (right) of 09-potted-meat-can reconstructed with various
reconstructed methods.



Figure 21. Pose performance and texture scores (left) and object renderings (right) of 10-banana reconstructed with various reconstructed
methods.



Figure 22. Pose performance and texture scores (left) and object renderings (right) of 11-pitcher-base reconstructed with various recon-
structed methods.



Figure 23. Pose performance and texture scores (left) and object renderings (right) of 12-bleach-cleanser reconstructed with various
reconstructed methods.



Figure 24. Pose performance and texture scores (left) and object renderings (right) of 13-bowl reconstructed with various reconstructed
methods.



Figure 25. Pose performance and texture scores (left) and object renderings (right) of 14-mug reconstructed with various reconstructed
methods.



Figure 26. Pose performance and texture scores (left) and object renderings (right) of 15-power-drill reconstructed with various recon-
structed methods.



Figure 27. Pose performance and texture scores (left) and object renderings (right) of 16-wood-block reconstructed with various recon-
structed methods.



Figure 28. Pose performance and texture scores (left) and object renderings (right) of 17-scissors reconstructed with various reconstructed
methods.



Figure 29. Pose performance and texture scores (left) and object renderings (right) of 18-large-marker reconstructed with various recon-
structed methods.



Figure 30. Pose performance and texture scores (left) and object renderings (right) of 19-large-clamp reconstructed with various recon-
structed methods.



Figure 31. Pose performance and texture scores (left) and object renderings (right) of 20-extra-large-clamp reconstructed with various
reconstructed methods.



Figure 32. Pose performance and texture scores (left) and object renderings (right) of 21-foam-brick reconstructed with various recon-
structed methods.
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