
An Investigation on LLMs’ Visual Understanding Ability
Using SVG for Image-Text Bridging

(Supplementary Materials)

Mu Cai*1, Zeyi Huang∗1, Yuheng Li1, Utkarsh Ojha1, Haohan Wang2, Yong Jae Lee1

1University of Wisconsin–Madison 2University of Illinois Urbana-Champaign

1. Qualatative Chat Results
Image Recognition and Manipulation. In this section,
we provide examples for chat-based image recognition
and manipulation using GPT4 [8]. The qualitative results
are shown in Figure 1: (a) SVG representation empowers
robust in-context digit recognition capability given different
background and foreground colors, (b) GPT4 can recognize
and depict the details of a dog with the prompt: "a
stylized bear or a similar mammal with
a round face and ears." Furthermore, GPT-4 can
identify the location of the dog’s left eye and remove it. (c)
GPT4 is capable of recognizing a natural image from the
CIFAR-10 dataset.

Referring Segmentation The objective of the task is to
label pixels in an image or video that correspond to an object
instance referred by a linguistic expression. SVG representa-
tion has two advantages. First, language instruction is natu-
rally embedded within the prompt, thus a separate design of
the image segmentation model is not needed. Second, a large
corpus of text and programming languages including XML
are seen during pretraining, benefiting the vision-language
understanding ability.

SVG is typically composed of several colored polygons,
where each of them can correspond to a part of the object.
Therefore, we can use the referring segmentation instructions
to guide the LLM in finding the corresponding SVG code.
Shown in Figure 6 (b) and (d) in the main paper, LLM can
localize the object decently well. In (b), the majority of the
airplane is selected as foreground, while in (d), not only is
the lettuce recognized, but also the two pieces of cheese are
localized and subsequently removed.

2. Robustness to Permutations
Next, to evaluate the robustness of LLMs against varia-

tions in SVG data, we conduct three distinct experiments,

*Equal Contribution. Order determined by random dice rolling.

where we: (i) shuffle the order of paths, (ii) randomize path
coordinate replacement, and (iii) randomize string replace-
ment. Each experiment is designed to mimic real scenarios
of imperfections in SVG data, providing insights into using
SVG with LLMs under challenging conditions.

Path Shuffle Experiment. SVG data consists of multiple
path elements, each representing an object or line in the
image. In this experiment, we test the model’s ability to
interpret hand-drawn SVG data from the MNIST dataset
when the sequence of path elements is shuffled. Note that, by
the very nature of SVG data, this alteration will not change
the final image; and hence, it is important to test if the LLM
can remain invariant to this change, even though we have
not explicitly provided it with this knowledge. The goal is
to assess the model’s ability to correctly interpret the digit,
regardless of the order of path elements. The results in
Table 1 indicate that LLMs are robust to path shuffle at test
time, maintaining a comparable performance regardless of
the path ordering.

Without Shuffle With Shuffle

Accuracy (%) 99.10 98.74

Table 1. Model performance with and without shuffled SVG path
elements.

Random Path Coordinate Replacement. We further
introduce a subtle form of noise by randomly altering the
coordinates in the SVG path data. Each numerical value
within the path commands is randomly translated within a
specific range. For example, for, ... <path d="M0 0
C18 0 17..."> might become ... <path d="M1
0 C18 1 18...">. We test several variations: (i) a mi-
nor adjustment within a 1/28th range (reflecting the 28x28
resolution of MNIST) and (ii) a more significant alteration
within a 5/28th range. This simulates real-world scenarios of
minor inaccuracies in SVG data, such as those resulting from
conversion errors or imprecise digitization. The accuracy

1



What object does this SVG 
represent? 

What kind of animal is it?

It's difficult to 
determine the exact 
animal based on the 
SVG, but it resembles 
a stylized bear or a 
similar mammal with a 
round face and ears.

This SVG represents a 
cute, symmetric face 
with ears, eyes, and a 
mouth.

This SVG 
represents a bird.

(a) (b)

What digit does this 
SVG image represent?

No, this is digit 3. What 
about this? 

This SVG image 
represents the digit 0.

This SVG image 
represents the digit 6.

Great! What about 
this?

This SVG image 
represents the digit 1.

(c)

Remove the left eye

What animal does this 
SVG represent? 

Great, thank you!

You're welcome! I'm 
glad I could help. If you 
have any more 
questions, feel free to 
ask.

Figure 1. More qualitative results of chat-based image recognition and manipulation. (a) In-context digit recognition in Colored-MNIST-(B).
(b) GPT can explain and manipulate the dog SVG image. (c) GPT4 can also recognize the bird from a CIFAR-10 example.

under different noise scales is presented in Table 2. Results
indicate that LLMs are decently robust to the perturbation of
the coordinate values.

0/28 1/28 2/28 5/28

Accuracy (%) 99.10 98.97 97.91 87.56

Table 2. Model performance under different noise scales.

Random String Replacement. Finally, we design the
most aggressive test of robustness, where we replace ran-
dom characters in the SVG strings with any English alpha-
bet letter, digit, or special symbol, regardless of whether
they are numerical values or part of SVG commands (like
transform="translate(0,0)"). The experiment is
conducted with varying probabilities for character replace-
ment, as shown in Table 3. Surprisingly, even after replacing
20% of a string with random characters, LLMs maintains a
high accuracy rate of 90.79%. This suggests that LLMs can
handle a wide range of perturbations in SVG data.

In conclusion, the results from these experiments demon-
strate that despite the introduction of perturbations in the
SVG data, LLMs can still perform well under challenging
conditions.

0% 1% 5% 10% 20% 50%

Acc 99.10 99.06 98.40 97.40 90.79 39.38

Table 3. Accuracy (%) with different probabilities of random string
replacement.

3. Style and Content Extrapolation
In this section, we assess if LLMs can extrapolate SVG

codes with more challenging transformations, such as con-
tent and style.

Style generation: We present LLMs with sample SVG
letters. The first task is to figure out the style in the given
examples. Then, given a new test query, the second task is
to transform this given query so that it adheres to the same
stylistic conventions as the example letters. The qualitative
results can be found in the appendix. We observe that GPT-4
is capable of replicating styles by analyzing the correlation
between given example SVG letter pairs and using this anal-
ysis to generate the corresponding test key letter.

Content generation: LLMs are shown two examples of
SVG code pairs. Each pair consists of a query and key pair
(both are numbers), where the query describes an SVG code
of a number, and the key describes the SVG code of another

2



Figure 2. More qualitative results of style extrapolation. The generation results of our method are annotated with a red square.

Figure 3. Understanding SVG content through the lens of GPT-4: GPT-4 demonstrates its ability to generate accurate content by analyzing
the correlation between provided example number pairs, and subsequently applying this relationship to ascertain the corresponding test
key number. Remarkably, in scenarios where the relationship exhibits ambiguity, GPT-4 can identify multiple possible interpretations.The
generation results of our method are annotated with a red square.

number with an introduced mathematical operation. The
operation can consist of add, subtract, multiply, and divide.
The mathematical operation should be held in both example
pairs. The first task is to figure out the mathematical opera-
tion in the two examples. Then, given a new test query SVG
number, the second task is to identify what number it is and

follow the mathematical operation discovered to generate
the corresponding test key number. GPT-4 showcases its
capability in content generation by analyzing correlations in
example SVG number pairs and applying these relationships
to identify corresponding test key numbers. Impressively,
in cases of ambiguity, GPT-4 can discern multiple potential

3



interpretations. We include qualitative results in Figure 3.
The prompt details can be found in the appendix.

4. Visual Reasoning Results of More Large Mul-
timodal Models

Here we evaluate GPT-4V [8] and recent open-sourced
multi-modal large language models, including LLaVA [7],
InstructBLIP [2], BLIP2 [6], mPLUG owl [11], and
MiniGPT4 [12]. As the result in Table 4 shows, all current
open-sourced multimodal models struggles at this funda-
mental reasoning task. Besides, we observe that LLaVA
frequently defaults to ’yes’ for yes/no queries and often
resorts to random guessing for counting tasks. This behav-
ior underscores the limitations of current large multimodal
models in structured and sophisticated reasoning.

Style Extrapolation: LLMs are provided with five
example pairs and are tasked with deciphering the stylistic
attributes inherent in these examples. Following this, a
new test query is presented to the LLMs. Their objec-
tive is to modify this query into the corresponding key,
ensuring that it aligns with the same stylistic principles
showcased in the example pairs. The qualitative results
are shown in figure 2. The specific prompt utilized for
this purpose is detailed below:‘‘Please perform
the following task carefully. In this
task, you will be shown five examples
of Scalable Vector Graphics (SVG)
code pairs. Each pair consists of a
query and key pair (both are English
letter), where the query describes the
SVG code of the original image, and
the key describes the SVG code of the
transformed image. Each will be named
\Example Query #" and \Example Key #"
respectively. Your first task is to
figure out the common transformation in
the five examples. The transformation
can consist of color, shape, size,
style, font, and background changes,
or any combination thereof. Even
though you cannot see the images, and
only their SVG codes, you need to
discover the transformations that are
happening at the image level and not
just at the code level. Be detailed,
and try to discover every change, and
the most important change is that
the paths in the SVG code between
each query and key is different due
to the common transformation but the
shapes of the letters that query and

key are representing remain the same.
Then, given a new test query SVG code
(named \Test Query"), your second task
is to transform that query into the
corresponding key SVG code (named
\Test Key"), following the common
transformation that you discovered in
the five example pairs. To help you
better understand the transformation,
I will also inform you of what letter
each query and key represent. You need
to find the shape of each query and
key by analyzing their path. Here are
the five example query and key pairs:
Example Query 1 (letter B):; Example
Key 1 (letter B):<SVG code here>;
Example Query 2 (letter R):<SVG code
here>; Example Key 2 (letter R):<SVG
code here>; Example Query 3 (letter
Z):<SVG code here>; Example Key 3
(letter Z):<SVG code here>; Example
Query 4 (letter E):<SVG code here>;
Example Key 4 (letter E):<SVG code
here>; Example Query 5 (letter N):<SVG
code here>; Example Key 5 (letter
N):<SVG code here>; Here is the test
query and key pair: Test Query (letter
#):; Test Key: ’’

5. Experiment Details
5.1. Dataset

Human Designed SVG Dataset We collect a dataset
from the public collection of SVG images.1 Specifically, we
collect the digits and icons to demonstrate image recognition
and generation capabilities. Examples are shown in Figure 4
(a) and (b).

Convert Raster Images to SVG 1) Directly convert using
curve tracing. Given the rich set of natural images in raster
format, we utilize the curve tracing algorithm to convert
RGB images into the SVG format.2 Specifically, we convert
MNIST [5] to SVG format using this approach, shown in
Figure 4 (c).

5.2. Raster Images to SVG Conversion

One of the most fundamental pieces of information for
visual perception is object shape. Our method can be con-
ceptualized as selectively diminishing details from an image,
prioritizing the extraction of less significant shapes. This
guided process of reduction offers a quantitative way to

1https://www.svgrepo.com/, https://www.kaggle.
com/datasets/victorcondino/svgicons

2https://github.com/visioncortex/vtracer

4

https://www.svgrepo.com/
https://www.kaggle.com/datasets/victorcondino/svgicons
https://www.kaggle.com/datasets/victorcondino/svgicons
https://github.com/visioncortex/vtracer


Question type GPT4-brief GPT-CoT GPT-4V LLaVA CNN+MLP Relation Networks InstructBLIP BLIP2 mPLUG owl MiniGPT4

Format SVG SVG PNG PNG PNG PNG PNG PNG PNG PNG
Unary 0.50 0.90 0.75 0.60 0.65 0.89 0.53 0.50 0.38 0.53
Binary 0.90 0.95 0.74 0.60 0.75 0.80 0.53 0.53 0.63 0.55
Ternary 0.10 0.88 0.28 0.10 0.55 0.55 0.10 0.30 0.30 0.30
Average 0.50 0.89 0.59 0.43 0.65 0.75 0.38 0.44 0.43 0.46

Table 4. Category-wise accuracy on the Sort-of-Clevr dataset.

(a) (b) (c) (d)

Figure 4. Visualization of our datasets. (a) and (b) are human-designed SVG vectors and icons. (c) and (d) are converted from raster images.
Specifically, (c) is generated using curve tracing from MNIST [5], while (d) is generated using SAM [4] and curve tracing sequentially.

manage the amount of visual data present within an im-
age. Within this framework, we perceive segmentation as
an example of extreme simplification, whereas vectorization
serves as a more moderate form of the same. Here we intro-
duce how we use such two approaches to convert the raster
images to SVG.

Image Vectorization. The vector tracing algorithm op-
erates in a sequential three-step process. Initially, pixels
are transformed into a defined path. Subsequently, this
path is condensed into a simplified polygonal representa-
tion. Lastly, the polygon is refined and approximated using a
curve-fitting (tracing) technique, which enhances its smooth-
ness.

There are several online tools to convert the raster images
(jpg and png) into vector graphics (SVG), such as Adobe
Illustrator [1], Inkscape [3], and VTracer [10]. We experi-
ment with all of them and found that VTracer leads to the
best balance between SVG complexity (code length) and
rich semantic representation.

In MNIST [5], we use the default hyperparameters during
conversion. Specifically, we (i) first binarize the MNIST
pixel value from the continuous range [0, 255] to the binary
set {0, 255} using the threshold 127.5, (ii) set the foreground
to black, and the background to white, and (iii) apply the
vector tracing algorithm VTracer.

Segmentation Prior. As mentioned earlier, segmentation
can provide a strong prior for object shape. We want a gen-
eralist model that can segment any image, i.e., not trained

and thus biased towards a certain dataset. The Segment
Anything (SA) [4] project introduces such an image segmen-
tation model, the Segment Anything Model (SAM), and a
large-scale dataset, SA-1B, with the aim of achieving pow-
erful generalization and zero-shot transfer across diverse
segmentation tasks, demonstrating competitive results often
surpassing prior fully supervised methods. We use the de-
fault hyper-parameters of SAM to segment the whole image
into a set of masks without class labels, where the color of
each mask is represented by the average value of the pixels
within the mask. Specifically, we sample 32 query points per
side (1024 points overall) to generate the image mask. Then
we select the top 20 masks with the highest area as the final
representation for an image.

We then use VTracer to transform the mask into SVG
format. Note that, to reduce the final SVG, we adjust several
settings: we set the number of significant bits to use in an
RGB channel to 0; we set the minimum angle displacement
degree to splice a spline to 90; we set the color difference
between gradient layers to be 35; we consider a corner to
have a minimum momentary angle of 0 degrees; we discard
patches smaller than 16 pixels in size; and we perform itera-
tive subdivide smoothing until all segments are shorter than
10 pixels.

5.3. Fine-tuning Dataset for Vicuna

We use the same JSON format in Vicuna [9] to construct
the fine-tuning dataset. We use all the training samples in
MNIST, translating to 60,000 SVG images. For each sample,
we construct one round of conversation: (i) From human:

5



‘‘Which digit does the following SVG
reflect? <SVG code here>’’, and (ii) From
GPT: ‘‘<label>’’. Here <label> denotes the digit
label, which ranges from 0 to 9. Then we use this dataset to
fine-tune Vicuna using the default hyper-parameters 3 for 3
epochs.

5.4. Prompt Engineering

In this section, we provide the details of prompt engineer-
ing for each task. The prompt is designed to figure out the
common transformation in the SVG example pairs first (each
example pair consists of a query and a key) and then trans-
form the query into the corresponding key SVG by following
the discovered common transformation.

In-context Image Classification. In this task, in-
context examples are aimed to provide more context
information using several image-label pairs, thus fa-
cilitating the final classification. The specific prompt
utilized for this purpose using 3 in-context examples
is detailed below: ‘‘Instruction: please
predict the digit number for each of
the following SVG images. Please think
step by step, and closely look at the
key identifying image characteristics.
Please just tell me the image class, no
other information is needed. Q: What
digit does this SVG image represent?
<SVG code here> A: This SVG image
represents digit <label> Q: What digit
does this SVG image represent? <SVG
code here> A: This SVG image represents
digit <label> Q: What digit does this
SVG image represent? <SVG code here>
A: This SVG image represents digit
<label> Q: What digit does this SVG
image represent? <SVG code here> A:
This SVG image represents digit .

Synthetic Data Study: In this task, the objective is
to conduct an analytical evaluation of the provided two
example pairs, examining changes that occur in aspects
such as color, shape, and size. The insight gathered from
this analysis will then be used to adapt the given query
into its corresponding key. The specific prompt utilized for
this purpose is detailed below: ‘‘Please perform
the following task carefully. In this
task, you will be shown two examples
of Scalable Vector Graphics (SVG)
code pairs. Each pair consists of a
query and key pair, where the query

3https://github.com/lm-sys/FastChat

describes the SVG code of the original
image, and the key describes the SVG
code of the transformed image. Each
will be named ‘‘Example Query #" and
‘‘Example Key #" respectively. Your
first task is to figure out the common
transformation in the two examples.
The transformation can consist of color,
shape, size, or any combination thereof.
Then, given a new test query SVG code
(named \Test Query"), your second task
is to transform that query into the
corresponding key SVG code (named
\Test Key"), following the common
transformation that you discovered
in the two example pairs. Here are
the two example query and key pairs:
Example Query 1: <SVG code here>;
Example Key 1:<SVG code here>; Example
Query 2:<SVG code here>; Example Key
2:<SVG code here>; Here are the test
query and key pair: Test Query:<SVG
code here>; Test Key:’’

Content Extrapolation: In this task, LLMs are presented
with SVG code pairs, each containing a query-key set
that depicts numbers. The key introduces a consistent
mathematical operation (addition, subtraction, multipli-
cation, or division) to the query number. The tasks are
to identify this operation in the examples and apply it
to new test queries to generate corresponding test keys.
To facilitate a more comprehensive understanding of
SVG number codes for the LLM, we initially present the
SVG codes for numbers 0 through 9 to the LLM prior to
posing specific queries. The specific prompt utilized for
this purpose is detailed below: ‘‘Please perform
the following task carefully. In this
task, you will be shown two examples
of Scalable Vector Graphics (SVG)
code pairs. Each pair consists of a
query and key pair, where the query
describes an SVG code of an integer
number, and the key describes the SVG
code of another integer number with
an introduced mathematical operation.
Each will be named \Example Query #"
and \Example Key #" respectively. In
addition to the example pairs, you
will be shown a new test query SVG
code (named \Test Query"). Your first
task is to identify which number each
example query, example key, and test
query represents. Your second task

6

https://github.com/lm-sys/FastChat


is to figure out all the possible
mathematical operations that are held
for all given example pairs. The
operation could be add, subtract,
multiply, and divide (the subtract or
multiply factor could be a fraction).
Then, according to the numbers of
example pairs and test query you
identified, your third task is to
predict the corresponding test key
number (named \Test Key"), following
all the mathematical operations that
you discovered in the given example
pairs. Finally, you need to generate
the corresponding SVG code of the test
key number. Here are the two example
query and key pairs: Example Query 1:
<SVG code here>; Example Key 1:<SVG
code here>; Example Query 2:<SVG code
here>; Example Key 2:<SVG code here>;
Here are the test query and key pair:
Test Query: <SVG code here>; Test Key:
(Note: think about four operations
one by one, and the operation should
be consistent for all given example
pairs)’’

6. Prompt Engineering for SVG QA Dataset
Curation

We use the following prompt to curate the SVG QA pairs
by leveraging GPT-4V:

Generate a JSON object containing a
quiz question based on an image derived
from an SVG file, such as icons or
emojis. The image filename is also
provided to help you better curate the
question, but note that this filename
is not leaked to the observer. If the
filename does not clearly correspond to
the image, just discard that filename,
never over-rely on the filename. The
question should be designed to test
the observer’s perception to the image
by making the correct answer evident
only upon seeing the image. Include
four answer options, ensuring that the
correct answer is straightforward to
identify for someone who actually view
this image. The question should relate
to the image’s category, distinctive
features, or its usuage. Provide the
JSON structure with fields for the
question, the four options (labeled

A, B, C, D), and the correct answer
indicated. Below are two examples
of how to structure the question and
answers within the JSON format.

{ "question": "Which category
does this SVG icon best represent?",
"options": { "A": "Technology", "B":
"Nature", "C": "Sports", "D": "Food"
}, "correct answer": "A" }

{ "question": "The SVG icon does not
use which of the following geometric
shapes?", "options": { "A": "Circles",
"B": "Squares", "C": "Triangles", "D":
"Hexagons" }, "correct answer": "D" }

Given this image and its filename
file path, your JSON:

7. Limitations (Extended)
Our focus was to demonstrate whether LLMs can un-

derstand images, and we used the SVG representation as
a bridge to enable our studies. If one were to develop an
approach out of this pipeline, then there are several limita-
tions. One major limitation of SVG representation is the
loss of fine details: Though converting raster images into
SVG format and leveraging XML-based textual descriptions
allows for efficient processing of crisp graphics and designs,
it is not as effective in handling photographic content. As a
result, fine-grained details, such as image textures, may be
lost during conversion.

Conversely, when the SVG code incorporates an exces-
sive level of detail, its sequence length can become pro-
hibitively long, which can pose challenges for the training
and inference of current Transformer-based LLMs. Devel-
oping hybrid representations that can retain the advantages
of both discrete and continuous data, while preserving finer
details, is a potential area for future exploration. For exam-
ple, in LLMs, the processing unit is the token, which can
correspond to one or several words. However, in SVG, we
would prefer to have a specific embedding module for each
geometric primitive in SVG, such as circles, polygons, and
so on.

Furthermore, we empirically observed that LLMs can not
handle low-level image manipulation tasks such as rotating
the overall image by a certain angle and scaling it by a ratio.
For example, we prompt GPT4 10 SVG images to conduct
the following tasks: (1) enlarge the width and height by
one time, (2) shrink the width and height to half, (3) rotate
clock-close by 90 degrees, (4) rotate 90 degrees. Results
indicate that none of the trials succeeded. Conducting such
low-level image manipulation tasks needs to update the ma-
jority content of SVG code, where current LLMs are not
capable of handling. Additionally, our empirical tests high-
lighted certain areas where LLMs fall short, particularly in

7



handling low-level image manipulation tasks. For instance,
when prompted to manipulate SVG images in tasks like
enlarging dimensions, shrinking dimensions, or rotations,
LLMs like GPT-4 displayed inadequate proficiency. Such
operations, which mandate considerable updates to the SVG
code, currently lie outside the proficiency range of these
models.

In summary, while LLMs do present limitations, it offers
promising initial results for the integration of LLMs and
SVG for visual tasks. Addressing these limitations could
lead to more powerful image representation algorithms and
pave the way for more versatile and comprehensive artificial
intelligence systems.

References
[1] Adobe Inc. Adobe illustrator. https://adobe.com/

products/illustrator, 2019. 5
[2] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat

Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung,
and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. In NeurIPS, 2023.
4

[3] Inkscape Project. Inkscape. https://inkscape.org,
2020. 5

[4] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 5

[5] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. 4, 5

[6] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. 2023. 4

[7] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. arXiv:2304.08485, 2023. 4

[8] OpenAI. Gpt-4 technical report. 2023. 1, 4
[9] Vicuna. Vicuna: An open-source chatbot impressing gpt-4

with 90%* chatgpt quality. https://vicuna.lmsys.
org/, 2023. 5

[10] VTracer. Vtracer. https://www.visioncortex.
org/vtracer-docs, 2020. 5

[11] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan,
Yiyang Zhou, Junyang Wang, Anwen Hu, Pengcheng Shi,
Yaya Shi, et al. mplug-owl: Modularization empowers
large language models with multimodality. arXiv preprint
arXiv:2304.14178, 2023. 4

[12] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv
preprint arXiv:2304.10592, 2023. 4

8

https://adobe.com/products/illustrator
https://adobe.com/products/illustrator
https://inkscape.org
https://vicuna.lmsys.org/
https://vicuna.lmsys.org/
https://www.visioncortex.org/vtracer-docs
https://www.visioncortex.org/vtracer-docs

	. Qualatative Chat Results
	. Robustness to Permutations
	. Style and Content Extrapolation
	. Visual Reasoning Results of More Large Multimodal Models
	. Experiment Details
	. Dataset
	. Raster Images to SVG Conversion
	. Fine-tuning Dataset for Vicuna
	. Prompt Engineering

	. Prompt Engineering for SVG QA Dataset Curation
	. Limitations (Extended)

