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In this supplementary material, we first describe the lim-
itation of LATTECLIP in Sec. 1. We then detail the im-
plementation of LATTECLIP and the baselines in Sec. 2,
followed by presenting additional ablation studies in Sec. 3.
Lastly, we include further qualitative results in Sec. 4.

1. Limitations
Despite promising results, LATTECLIP considers a lim-

ited number of description types. Expanding description
generation to include more contextual levels, such as scenes,
objects, and attributes, would provide richer contextual infor-
mation. Additionally, our performance is constrained by the
underlying LMM model, and improvements could be made
with better models in the future. Representing a class by a
single prototype may limit our ability to capture intra-class
variance; exploring multiple prototypes per class could be
beneficial. Lastly, it is unclear why the method improves on
some datasets but not others. Understanding this discrepancy
could lead to better methods.

2. Implementation details
We implement LATTECLIP based on the standard fine-

tuning pipeline of OpenCLIP [7] using the VIT-B/32 model.
The hyperparameters used are the default ones provided
in OpenCLIP [7], except for batch size and learning rate.
We use a batch size of 512 and a learning rate of 1e-
7 for the datasets Caltech101 [3], DTD [2], Eurosat [5],
FGVC [11], Oxford Pets [13], Cars [8], Flower102 [12],
and UCF101 [14]. For the datasets Food101 [1] and
SUN397 [15], we use a learning rate of 1e-6. LATTECLIP
is trained for min{2000 iterations, 50 epochs}.

For FLYP [4], we reimplement it based on its official
implementation1 and OpenCLIP [7], as its idea is intuitive
and simple: fine-tuning using contrastive loss with class
templates instead of cross-entropy loss. We use the same
OpenCLIP-based model and training hyperparameters as
LATTECLIP. The pseudo-labels are recalculated after every

*The main work was done while interning at Amazon.
1https://github.com/locuslab/FLYP

weight update, following [9].
For ReCLIP [6], we use the official implementation2, but

substitute OpenCLIP as the base CLIP model to ensure a fair
comparison across all methods. While ReCLIP is designed
for transductive learning (train/test on test set), as shown in
the paper and by its official implementation, we adapt it to
our experimental setup. Specifically, we retrain and evaluate
ReCLIP using identical dataset splits as LATTECLIP.

3. Additional ablations

Incorrect images in generating T group. Tab. 1 presents
the results across all datasets when varying the number of
correct images, which are selected using ground-truth labels,
in groups of 4 images used for generating group-descriptions.
Increasing the number of correct images generally leads to
improvements in most datasets. However, the average perfor-
mance gap remains small, demonstrating the robustness of
our method to the presence of incorrect images in the group.
This robustness is further evidenced by the performance of
LATTECLIP, which remains competitive even when relying
on pseudo-labels for image selection instead of ground-truth
labels.

Number of images per group. Tab. 2 analyzes the per-
formance as the number of images per group used for gener-
ating group-description increases. Generally, more images
per group lead to higher performance on most datasets. This
is intuitive, as more images provide richer information and
a higher chance of including correct images. Using only
two images results in the worst performance because select-
ing a wrong image would significantly impact the outcome,
making 50% or 100% of the selected images incorrect. Con-
sequently, larger groups are more robust to the inclusion
of wrong images. As LLAVA [10] has a fixed resolution,
adding more images results in lower resolution per image.
This could explain the performance plateau on datasets with
more image details, such as UCF101 or SUN397.

2https://github.com/michiganleon/ReCLIP_WACV
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label type #correct Avg. EuroSAT Sun397 Food101 Flower102 DTD FGVC Oxford Pets Cars UCF101 Caltech101

Pseudo (ours) N/A 72.23 80.27 70.68 79.63 71.94 56.26 22.02 89.21 87.40 70.08 94.77

Ground-truth

1 72.48 80.02 69.19 79.04 72.88 61.11 20.55 89.62 87.35 70.16 94.89
2 72.61 81.28 69.73 79.13 72.55 60.82 20.76 89.51 87.53 69.65 95.13
3 72.72 80.81 70.28 79.80 72.72 60.28 21.87 89.48 87.29 69.52 95.17
4 72.64 80.40 70.54 78.79 72.96 60.17 21.42 89.62 87.96 70.00 94.56

Table 1. Impact of varying the number of correctly chosen images based on ground-truth labels when using 4 images for group-description
generation. Our approach yields comparable performance despite relying solely on pseudo-labels for image selection.

#Images Average EuroSAT Sun397 Food101 Flower102 DTD FGVC Oxford Pets Cars UCF101 Caltech101

2 71.55 80.74 69.36 76.03 71.24 56.03 21.12 89.29 87.32 69.88 94.52
4 72.23 80.27 70.68 79.63 71.94 56.26 22.02 89.21 87.40 70.08 94.77
8 72.31 79.90 69.90 79.55 73.04 57.69 22.00 89.18 87.65 69.71 94.44
16 72.49 80.67 70.18 78.24 73.20 58.64 22.28 89.53 87.85 70.05 94.28

Table 2. Impact of increasing the number of images per group for generating group-descriptions. Overall, more images lead to higher
performance due to richer information and increased robustness against the inclusion of incorrect images. However, the performance plateaus
on some datasets, such as UCF101 or SUN397, could be due to the fixed resolution of LLAVA, resulting in lower resolution per image as the
number of images increases.

4. Additional results

Examples of LMM-synthetic texts and pseudo-labels.
Fig. 1 illustrates examples of image-description T image and
group-description T group generated from individual images
x and image groups xgroup, respectively. The figure also
presents ground-truth labels (GT) along with pseudo-labels
derived from the frozen CLIP model (czs) and the fine-tuning
model (cft). Note that the class-description is generated
by substituting the pseudo-label c ∈ {czs, cft} into a pre-
defined template: “a photo of a [c].”. Combining
both types of pseudo-labels increases the chance of capturing
the ground-truth label, as each type of pseudo-label is correct
for different examples. For instance, czs is correct for rows
2, 3, and 4, while cft is correct for rows 1 and 4. Regarding
the synthetic description, T group provides richer contextual
information, particularly in rows 1, 2, 4, and 5, and contains
less hallucinated information compared to T image, as seen
in rows 2 and 3, with greater accuracy in rows 1, 4, and 5.



x T image xgroup T group pseudo-labels GT

Buildings and green
spaces.

Green, brown, and blue colors,
indicating vegetation, soil, and

water.

czs: permanent
crop land, cft:

river

river
(Eurosat)

The texture in the
photo is a wooden

floor with a
herringbone pattern.

Zigzag patterns, geometric
shapes, and vibrant colors.

czs: zigzagged, cft:
grooved

zigzagged
(DTD)

The pink primrose
flower in the photo is
a beautiful and vibrant

display of nature’s
beauty.

Purple and yellow petals, green
stems, multiple layers of petals.

czs: pink primrose,
cft: silverbush

garden phlox
(Flower102)

Woman in white shirt
holding blue shoe.

Shoes, women, shopping, retail,
store, display, merchandise,

fashion, sales, shopping center,
mall, department store,
commercial, consumer.

czs: shoe shop, cft:
shoe shop

shoe shop
(SUN397)

Person on trampoline. Gymnastics, acrobatics, high
jumps, flips, and aerial stunts.

czs: uneven bars,
cft: parallel bars

parallel bars
(UCF101)

Figure 1. Examples of image-description T image generated from image x and group-description T group generated from image group xgroup,
and two types of pseudo-labels: zero-shot czs and fine-tuning cft. Note that the class-description is generated by substituting the pseudo-label
c ∈ {czs, cft} into a predefined template: “a photo of a [c].”.
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