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In this supplementary material, Section 1 provides more
implementation details of the proposed method. Section 2
introduces the definition of the Intra-class correlation (ICC)
mentioned in Section 4.4 of the manuscript. Section 3 dis-
plays additional analysis to better demonstrate the effective-
ness of our method. Section 4 supplements the comparison
results on the OULU-NPU protocol [1]. In Section 5, we
display more visual results to facilitate an intuitive under-
standing of the proposed method. Finally, we analyze the
limitations of the proposed method in Section 6.

1. More Implementation Details

In our experiments, we use the MTCNN [19] algorithm
for face detection and then adopt a conservative crop that
enlarges the facial region by a factor of 1.3 around the cen-
ter of the tracked face. The cropped facial images are nor-
malized to [−1, 1] and then sent to the framework. Ran-
dom resized crops and random horizontal flips are used
for data augmentation. We implement our method using
the PyTorch [11] framework and conduct experiments on a
GeForce RTX 2080 Ti GPU. For hyperparameter settings,
we fix the patch factor P = 16 and the number of chosen
masks K = 4 mentioned in Section 3.2 and Section 3.3 of
the manuscript, respectively.

2. Definition of the Intra-class Corrleation

In this section, we give the definition of the Intra-class
correlation (ICC) [7, 9] in detail. Denote E as a feature ex-
tractor and D = D1 ∪ D2 ∪ · · · DM be a dataset with M
different categories, where Dm = {(Xi, yi)|yi = m} con-
sists of all data in the m-th class. Let f i be the normalized
feature vector of the sample Xi extracted by E , which is
defined as:

f i =
E(Xi)

∥E(Xi)∥2
. (1)
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Then, the center of the image features from m-th class can
be computed by

µ(E|Dm) = |Dm|−1
∑

Xi∈Dm

f i, (2)

where |Dm| denotes the cardinality of Dm. Based on this,
the classical intra-class and inter-class variation on the com-
plete dataset D are defined as

Vintra(E|D) =
1

M

M∑
m=1

(
|Dm|−1

∑
Xi∈Dm

∥f i − µ(Dm)∥2
)
,

(3)

Vinter(E|D) =
1

M(M − 1)

M∑
m=1

∑
j ̸=m

∥µ(Dj)− µ(Dm)∥2.

(4)

From the above equations, it is easy to check that Vintra

measures the feature variation within a specific category,
while Vinter measures the average pairwise distances of
class centers. Following [7], the intra-class correlation
(ICC) writes

ICC(E|D) =
Vinter

Vintra
. (5)

Hence, the ICC value of a feature extractor E on a dataset
D is larger when the inter-class variation is larger and the
intra-class variation is smaller. To this end, the ICC value
could measure the discriminability of a feature extractor,
given that a good feature embedding has a smaller within-
class variation and a larger margin across categories.

3. Additional Analysis

3.1. Ablation study on the proposed constraints

Here, we display additional ablation studies to investi-
gate the effectiveness of the proposed constraints used in
our method. We adopt the domain generalization proto-
col [5, 13, 16] to conduct experiments in this section and
show the results in Tab. 1. We first replace the proposed fre-
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Variants
O&C&I to M O&M&I to C O&C&M to I I&C&M to O Avg.

HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC
LFR → LIR 6.43 97.99 9.33 96.87 7.85 97.80 10.80 95.94 8.60 97.15
w/o LST 8.33 97.71 9.22 96.13 9.45 96.61 12.31 94.83 9.83 96.32
Ours 5.95 98.52 7.33 97.86 5.45 98.77 10.88 96.29 7.40 97.86

Table 1. Ablation study on the proposed constraints.

Variants
O&C&I to M O&M&I to C O&C&M to I I&C&M to O Avg.

HTER AUC HTER AUC HTER AUC HTER AUC HTER AUC
In. Color & Rec. Color 7.66 97.22 7.74 97.65 10.89 96.69 12.61 94.17 9.73 96.43
In. Color & Rec. Gray (Ours) 5.95 98.52 7.33 97.86 5.45 98.77 10.88 96.29 7.40 97.86
In. Gray & Rec. Color 11.76 93.61 11.10 94.87 15.50 91.78 13.03 93.11 12.85 93.34
In. Gray & Rec. Gray 11.43 94.18 9.33 94.20 15.45 91.75 12.95 93.05 12.29 93.30

Table 2. Analysis of the frequency-aware autoencoder’s input and reconstruction types.

quency reconstruction loss LFR with an image reconstruc-
tion loss LIR:

LIR =

P∑
i

P∑
j

W ′
i,j ⊗ |Pi,j(X̂)− Pi,j(X)|, (6)

where W ′
i,j has a similar definition to W i,j in Eq. (2) of

the manuscript but in the spatial domain. As observed, this
variant yields a decrease of 0.71% in AUC on average. This
suggests that representations achieved by frequency recon-
struction are more suitable for face anti-spoofing than those
achieved by pixel reconstruction. Then, we ablate the use
of the soft-margin triplet loss LST defined in Eq. (3) of the
manuscript. This variant yields an average AUC of 96.32%,
which is lower than our proposed method, i.e., 97.86%. The
quantitative results indicate that the soft-margin triplet loss
improves the quality of the latent features for generalizable
face anti-spoofing.

3.2. Analysis of the input and reconstruction types

Recall that our frequency-aware autoencoder, trained to
restore the frequency features of grayscale images, retains
frequency details and gradually filters out stylized features
from input color images to obtain intermediate features
that are robust to style shifts (refer to Section 3.2 of the
manuscript). Here, we experiment with some other combi-
nations of the input and reconstruction types to demonstrate
the effectiveness of the proposed design. We present the re-
sults in Tab. 2. From the table, it is observed that our choice
gets the best result in all settings. As shown in the first row,
when the reconstruction target is changed to (frequency rep-
resentation of) the color image, the variant undergoes ob-
vious performance drops. We suspect that reconstructing
RGB frequencies leads to the undesirable preservation of
much style information, which is tied to domain properties
and negatively influences generalization. Besides, when the
inputs to the autoencoder are shifted to grayscale images,

Prot. Methods APCER(%) BPCER(%) ACER(%)

1

FaceDS [6] 1.2 1.7 1.5
Zhang et al. [21] 1.7 0.8 1.3
Liu et al. [10] 0.8 1.3 1.1
BCN [17] 0.0 1.6 0.8
CDCN [18] 0.4 1.7 1.0
DCN [20] 1.3 0.0 0.6
LMFD-PAD [3] 1.4 1.6 1.5
PatchNet [15] 0.0 0.0 0.0
Ours 0.4 0.8 0.6

2

FaceDS [6] 3.1 1.9 2.5
Zhang et al. [21] 2.7 2.7 2.4
Liu et al. [10] 2.3 1.6 1.9
BCN [17] 2.6 0.8 1.7
CDCN [18] 1.5 1.4 1.5
DCN [20] 2.2 2.2 2.2
LMFD-PAD [3] 3.1 0.8 2.0
PatchNet [15] 1.1 1.2 1.2
Ours 1.7 1.4 1.5

3

FaceDS [6] 2.7±1.3 3.1±1.7 2.9±1.5
Zhang et al. [21] 2.8±2.2 1.7±2.6 2.2±2.2
Liu et al. [10] 1.6±1.6 4.0±5.4 2.8±3.3
BCN [17] 2.8±2.4 2.3±2.8 2.5±1.1
CDCN [18] 2.4±1.3 2.2±2.0 2.3±1.4
DCN [20] 2.3±2.7 1.4±2.6 1.9±1.6
LMFD-PAD [3] 3.5±3.2 3.3±3.2 3.4±3.1
PatchNet [15] 1.8±1.5 0.6±1.2 1.2±1.3
Ours 1.3±0.5 0.0±0.0 0.6±0.2

4

FaceDS [6] 5.1±6.3 6.1±5.1 5.6±5.7
Zhang et al. [21] 5.4±2.9 3.3±6.0 4.4±3.0
Liu et al. [10] 2.3±3.6 5.2±5.4 3.8±4.2
BCN [17] 2.9±4.0 7.5±6.9 5.2±3.7
CDCN [18] 4.6±4.6 9.2±8.0 6.9±2.9
DCN [20] 6.7±6.8 0.0±0.0 3.3±3.4
LMFD-PAD [3] 4.5±5.3 2.5±4.1 3.3±3.1
PatchNet [15] 2.5±3.8 3.3±3.7 2.9±3.0
Ours 2.5±2.7 2.5±2.7 2.5±0.0

Table 3. Comparison results on the OULU-NPU dataset.

the resulting variants fail to leverage incomplete input infor-
mation for face anti-spoofing, which validates the necessity
of using complete representations for the inputs. In sum-
mary, these results verify that our design facilitates the re-
tention of style-irrelevant frequency details while avoiding
neglecting useful features from complete input information.



4. Additional Comparison Results
This section includes more comparison results using the

OULU-NPU [1] dataset. OULU-NPU consists of four pro-
tocols for evaluating the model robustness against unseen
environments (i.e., Protocol 1), unseen spoof mediums (i.e.,
Protocol 2), unseen capture devices (i.e., Protocol 3), and
all of the above (i.e., Protocol 4), respectively. The results
on these protocols are shown in Tab. 3. It is seen that our ap-
proach achieves state-of-the-art results on challenging Pro-
tocols 3 and 4 while obtaining comparable performance on
Protocols 1 and 2. It is worth noting that previous methods
leverage auxiliary supervision like depth maps [6, 18, 21],
reflection maps [17], or fine-grained spoof labels [15] to
learn discrepancy information, while we only use the binary
classification labels. The competitive results yielded by our
method demonstrate the effectiveness of the proposed fre-
quency mitigation framework.

5. Additional Visual Results
5.1. Visualization of Classification Decision

In this subsection, we investigate the decision-making
mechanism of our proposed method to better understand its
effectiveness. Specifically, we display the Grad-CAM [12]
visualization of the previous method SSDG [5] and our ap-
proach in Figure 1. We can see that SSDG fails to capture
the essential discrepancy between live and spoof samples,
as it only learns to seek spoofing cues in limited regions.
On the contrary, based on the proposed frequency shortcut
mitigation, our method produces informative attention maps
for separating spoof from live. This discriminative ability
mainly results from comprehensive judgment for face anti-
spoofing achieved by our framework. For example, regard-
ing the cut paper attacks displayed in the second row of the
left side, our method can focus on the paper edge as well
as the cut edge near the eyes to detect spoof traces. For the
video replay attacks shown in the last row, our method at-
tends to the whole facial region to search for spoof details
like Moiré patterns. This visualization, from another per-
spective, verifies our proposed framework’s superiority.

5.2. Visualization of Learning Dynamics

We investigate the learning dynamics of our frequency
shortcut mitigation framework to better understand its ef-
fectiveness in this subsection. We adopt the I&C&M to O
setting from the domain generalization protocol [5, 13, 16]
for the following analysis. Regarding image classification
tasks, the gradient information ∂L/∂X provides us valu-
able information about the contribution of spatial domain
image to classification1. Since our framework targets face
anti-spoofing through the lens of frequency analysis, we are

1We use L to denote the cross-entropy loss here for simplicity.

particularly interested in the gradient information of fre-
quency domain representations. Inspired by previous fre-
quency analysis work [2, 8], we propose to visualize the
spectral density of gradients during the training process to
study the learning dynamics.

First, we supplement some basic notations used in this
subsection. Following the definition in [8], the gradient
spectrum of an input sample writes:

G = F(
∂L
∂X

), (7)

where F indicates the Fast Fourier Transformation (FFT)
and G shares the same spatial shape with the input X . We
denote G(u, v) as a vector located in (u, v) in the gradient
spectrum. To investigate which frequency sets attract more
attention of the model, we split the gradient spectrum G into
several bands Bi (see Section 3.3 of the manuscript), and
then calculate a spectral density scalar Si for each frequency
band. The spectral density measures the azimuthal average
of the magnitude of Fourier coefficients over frequencies in
a certain band:

Si = |Bi|−1
∑

(u,v)∈Bi

∥G(u, v)∥2. (8)

We use a subset of source domain data to calculate Si

for each frequency band during the first 8,000 training iter-
ations, normalize these values to [0, 1] over all bands at each
training iteration, and finally plot the visual results in Fig-
ure 2(a)-(b). From the figures, we have the following ob-
servations. (1) SSDG [5] roughly focuses on a fixed, lim-
ited set of frequency bands during the training process. To
detail, the bright regions in Figure 2(a) remain unchanged
throughout the training and cover relatively fewer frequency
bands compared with our method displayed in Figure 2(b).
This indicates that SSDG treats these frequency bands as
shortcut representations to simplify the learning process on
source domains; however, it may fail on the target domain.
(2) On the contrary, our method attends to a broader set of
frequency bands as the bright regions shown in Figure 2(b)
approximately cover the entire spectrum. Besides, the spec-
tral focus (i.e., the white areas) of our model evolves as the
training process continues, promoting the model to attend
to under-explored bands for comprehensive judgment.

We further calculate the standard deviation of the nor-
malized spectral density Si across frequency bands and vi-
sualize the trend with respect to training iterations in Fig-
ure 2(c). Intuitively, a small standard deviation of Si across
bands means the model allocates relatively even attention to
each band, thus alleviating shortcut learning and ensuring a
broad focus over the whole frequency spectrum. As shown
in this figure, the standard deviation of our model continues
to decrease as the training continues, while that of SSDG is
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Figure 1. Grad-CAM [12] visualization. Best viewed in color.

(a) SSDG (b) Ours (c) Standard deviation

Figure 2. Analysis of the spectral density of gradients during the training process. (a)-(b): Normalized spectral density of gradients at the
corresponding frequency bands with respect to the first 8,000 training iterations. (c): Standard deviation of the normalized spectral density
across frequency bands measured at specific training iterations.

stuck at a high value. These results effectively verify the su-
periority of our shortcut mitigation framework, which facil-
itates the continuous exploration of frequency information
for an improved understanding of spoof detection.

6. Limitations

While the proposed method demonstrates its superior-
ity over existing approaches across multiple benchmark
datasets, it has limitations. Specifically, our method gears
toward shortcut mitigation by broadening the model’s at-
tention across a wide frequency range in source domain
data. However, it might not adequately generalize to sce-
narios entirely unfamiliar, where the discrepancies between
live faces and spoof images diverge significantly from those
encapsulated by the source domain data. Besides, akin to
traditional image classifiers, our method remains vulnera-
ble to adversarial attacks [4, 14]. Intricately crafted adver-

sarial inputs could potentially deceive the model, leading to
inaccurate predictions.
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