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Figure 1. Pixel-level plant cover over time.

This supplementary material provides additional details
and insights for the WeedsGalore dataset. Sec. 1 describes
the steps for orthomosaic generation, Sec. 2 shows the per-
centage plant cover change through the data collection pe-
riod, Sec. 3 includes examples from the dataset, and Sec. 4
shows qualitative examples supporting the analyses done in
the main paper. Sec. 5 describes the theoretical grounds
of the dropout approximation of Bayesian Variational Infer-
ence, and Sec. 6 provides further results on cross dataset
evaluation, as well as more details on Maize2024 data.
Lastly, Sec. 7 provides runtime estimates and number of pa-
rameters.

1. Orthomosaic Generation

The single-band images are processed into an orthomo-
saic with the software Agisoft Metashape using default pa-
rameter values recommended for DJI Phantom 4 Multispec-
tral data processing [1]. Prior to alignment, in order to get
higher coordinate accuracy for the raw images, they are
processed with Post-Processing Kinematics (PPK) for po-
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sitional correction. We used reference data provided by the
Satellite Positioning Service of the German National Survey
(SAPOS) [2].

2. Multitemporal Overview

Total per-pixel plant cover change through the acquisi-
tion period can be seen from Fig. | for both crops and
weeds. It shows a steep increase over time. This results
in a large variety in terms of plant size in our dataset. It is
also seen that most of the plant cover comes from weeds,
instead of crops. This again points out to the diversity in
our dataset.

3. Visual Examples

More visual examples from the dataset, including sin-
gle band images and semantic masks can can be seen from
Fig. 2.

4. Qualitative Examples and Failure Cases
4.1. Semantic Segmentation

Quickweed (Galinsoga parviflora) is often misclassified
as amaranth (Amaranthus retroflexus). There are two pos-
sible reasons behind this. Firstly, amaranth is the most
represented weed class in the dataset while quickweed is
the least. The second is their appearances. They are both
broadleaf plants with similar phenotypes, which makes it
challenging to distinguish them from aerial drone imagery,
where the resolution is a limiting factor (see Fig. 3).

4.2. Instance Segmentation

Qualitative results for instance segmentation can be seen
from Fig. 4. For plants in early growth stages, the objects
are very small, hence the task is challenging and some in-
stances are missed. For later dates, the performance is poor
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Figure 2. Examples scenes from WeedsGalore. Five single-band channels (red, green, blue, red-edge, near-infrared), semantic (
) , s ) and instance masks.

for areas with high overlap (common for large plant cover), 5. Theoretical Grounds of Variational Infer-
and plant organs can be oversegmented into multiple objects ence with MC Dropout
(e.g. different leaves).

Let D,, be the dataset, on which the model is trained,
and z* be a new input, for which we would like to in-
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Figure 3. Amaranth vs. quickweed. (a) An RGB image from our
dataset where (b) two instances of amaranth and quickweed are
marked. (c) Examples of the same species from a hand-held cam-
era, where they are more distinguishable. Best viewed on screen
zoomed in.
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Figure 4. Qualitative results on instance segmentation.

fer the posterior predictive distribution p(y*|z*, D,) =
[ p(y*|az*, w)p(w|D,,) dw, where w are the trainable pa-
rameters of the network and p(w|D,,) their posterior dis-
tribution. Due to its intractability, we approximate the
posterior by the variational density g, which minimizes
the Kullback-Leibler divergence KL(g(w)||p(w|D,)). This
is equivalent to maximizing the evidence lower bound
(ELBO) [5], and can be practically realized by commonly
used stochastic optimizers and cost functions (e.g. cross-
entropy loss) [3]. In VI with MC-Dropout, g(w) ~
Bernoulli(pg) is assumed, where p, is the dropout probabil-
ity. Different from the traditional approach of using dropout
solely for its regularization effect (i.e., to avoid overfitting),
the dropout layers are also kept on during test time, hence
each prediction is a sample from the approximate posterior.
Those samples can be used to calculate the predictive en-
tropy, which is a measure of both epistemic and aleatoric
uncertainty [4].

In the case of semantic segmentation, where each pixel
is assigned one of the C classes, and K is the number of

Source UAV  Maize ‘ TIoUpg  I0Ueop  IoUyees  mloU
PhenoBench v X 95.96  21.18 0.61 39.25

CropAndWeed X v 9452 0.00 1692 37.15
MaizeOrWeed X v 93.73 8.54 9.33 37.20
WeedsGalore train set v/ v ‘ 9797 6793 7208  79.33

Table 1. Semantic segmentation scores on the WeedsGalore test
set for different source domains (i.e. training datasets).

samples drawn from the posterior, the predictive entropy is
given as

K
Hly"|o*, D] = =Y (K — clx*, w)

6. Cross-Dataset Evaluation
6.1. Results on WeedsGalore

In this section, we provide scores on WeedsGa-
lore test set where the network is trained on different
datasets, namely PhenoBench [7], CropAndWeed [6], and
CropAndWeed (1753 image subset of CropAndWeed, con-
taining only maize scenes). The quantitative results are
shown in Tab. 1. Phenobench [7] achieves 21.18% for
crops, but completely misses weeds. CropAndWeed [6]
variants perform better for weeds, but again poorly on
crops, showing that even a dataset for the same crop does
not generalize to another acquisition mode. To sum up, the
models trained on other datasets perform poorly on our test
set. This outcome is not surprising, yet it strongly indicates
that there is a need for specifically tailored data for this ap-
plication setting.

6.2. Results on Maize2024
6.2.1 Further Dataset Information

The OOD field (Maize2024) is another agricultural site,
located in Marquardt, Potsdam, Germany (52°27°51,1”
12°57°35,6”) and covers an area of approximately 2550m?2.
The crop was sown in May 2024 (i.e. one year later than
WeedsGalore) and on June 6, 2024 herbicide was applied to
12 out of 24 patches with a spraying tractor. The patches
were chosen taking the field slope, and wind direction (at
the time of the herbicide spraying) into account, so that
patches with different characteristics are present in both
control and test groups. As a result, data was collected with
the same drone on June 25, where a considerable amount of
weeds was eliminated in the sprayed patches whereas con-
trol (i.e. not sprayed) areas had full plant cover (i.e. com-
plete weed infestation).



Figure 5. Annotated reference data for Maize2024. Each marked area corresponds to approximately 15m?.
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Figure 6. Normalized confusion matrices for Maize2024. Re-
sults for 3-class semantic segmentation with deterministic (left) vs
probabilistic (right) variants of DeepLabv3+, trained on WeedsGa-
lore.

Method #Parameters  Runtime [ms]
MaskFormer 41M 72.45
DeepLabv3+ 39M 103.12
Prob. DeepLabv3+ 3OM 627.37

Table 2. Comparison of model parameters and inference runtime
for different methods on WeedsGalore scenes. Reported scores
are computed on a Quadro P4000 GPU, and for 3-channel input, 3
output classes, and 5 forward passes for the probabilistic variant.

6.2.2 Confusion Matrices

The confusion matrices on Maize2024 data for determinis-
tic and probabilistic models can be seen in Fig. 6.

7. Computational Comparison

Tab. 2 provides the number of parameters and runtime of
the models that are used in this paper. Compared to the de-
terministic version, the number of parameters of the proba-
bilistic one using MC dropout is the same. For MC dropout
we need to run several forward passes, increasing the run-
time accordingly.
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